
Unit – 1 

Linear system of equations 

Rank of the matrix: 

Let A be m × n matrix, matrix A is said to be of rank r when  

(i) It has at least one non-zero minor of order r,  

(ii) Every minor of order higher than r vanishes.  

(or) 

The rank of a matrix is the largest order of any non-vanishing minor of the matrix.  

The rank of a matrix A shall be denoted by 𝜌(A). 

Note: 1. If a matrix has a non-zero minor of order r, its rank is > r.  

2. If all minors of a matrix of order r + 1 are zero, its rank is < r.  

Ex1: find the rank of the matrix 

















654

543

321

 

Sol: Let A =  

















654

543

321

 

det A = 

654

543

321

 = 0 

rank of A ≠ 3. 

Consider a minor of order 2 = 
43

21
= -2 ≠ 0 

Rank of the matrix A = 2. 

Ex2: find the rank of the matrix 

















5078

8765

4321

 

Sol: Let A =   

















5078

8765

4321

 

det A = 

5078

8765

4321

= 24 ≠ 0 

Rank of the matrix A = 3. 

Echelon form of a matrix: 

A matrix is said to be in echelon form if it has the following properties 



(1) Zero rows, if any, are below any non-zero row. 

(2) The first non-zero entry in each non-zero row is equal to 1. 

(3) The number of zeros before the first non-zero element in a row is less than the 

number of such zeros in the next row. 

Conditional (2) is optional. 

Ex1: 
Reduce the matrix A = 



















5786

3123

2342

0321

 into echelon form and hence find its rank 

Sol: 
Consider A =  



















5786

3123

2342

0321

 

𝑅2 →  𝑅2 −  2𝑅1, 𝑅3 →  𝑅3 −  3𝑅1, 𝑅4 →  𝑅4 −  6𝑅1

     

























51140

3840

2300

0321

 

𝑅2 ↔  𝑅3

     

























51140

2300

3840

0321

 

𝑅4 ↔  𝑅4 −  𝑅2

     

























2300

2300

3840

0321

 

𝑅4 ↔  𝑅4 −  𝑅3

     























0000

2300

3840

0321

 
This is in Echelon form and the number of non-zero rows is 3. 

Rank of A = 𝜌(A) = 3 

Ex2: 
Reduce the matrix A = 























0211

2013

1101

1310
 into echelon form and hence find its rank 

Sol: 
Consider A = 























0211

2013

1101

1310
 

 

𝑅1 ↔  𝑅2 























0211

2013

1310

1101
 



𝑅3 →  𝑅3 −  3𝑅1, 𝑅4 →  𝑅4 −  𝑅1  

























1310

1310

1310

1101
 

𝑅4 →  𝑅4 − 𝑅2, 𝑅3 →  𝑅3 −  𝑅2  





















0000

0000

1310

1101
 

This is in Echelon form and the number of non-zero rows is 2. 

Rank of A = 𝜌(A) = 2 

 

The following problems are discussed in the class work: 

1 

Reduce the matrix A = 



























1011

3252

0111

1331  into echelon form and hence find its rank 

2 
Reduce the matrix A = 



















 1348

13748

3124

5312
 into echelon form and hence find its rank 

3 
Find the rank of the matrix A= 



















19171615

9765

8645

7543
.by reducing to Echelon form 

 

Normal form:  

Every m × n matrix of rank r can be reduced to the form I𝑟,  0rI or 








00

0rI
 by a finite 

chain of elementary row or column operations, where I𝑟  is the r-rowed unit matrix. 

The above form is called “normal form” or “canonical form “of a matrix. 

Ex1: 
Find the rank of the matrix



















6573

4342

2231

2121

, by reducing it to be the normal form. 

Sol: 

Let A = 



















6573

4342

2231

2121

 

𝑅2 →  𝑅2 − 𝑅1, 𝑅3 →  𝑅3 −  2𝑅1, 𝑅4 →  𝑅4 −  3𝑅1 



















0210

0100

0110

2121

 



𝑅4 →  𝑅4 − 𝑅2 



















0100

0100

0110

2121

 

 

𝑅4 →  𝑅4 − 𝑅3 



















0000

0100

0110

2121

 

 

𝐶2 →  𝐶2 −  2𝐶1, 𝐶3 →  𝐶3 −  𝐶1, 𝐶4 →  𝐶4 −  2𝐶1 



















0000

0100

0110

0001

 

𝐶3 →  𝐶3 −  𝐶2 



















0000

0100

0010

0001

 

Rank of the matrix is 3 and This is of the form  








00

0rI
 

Ex2: 

Reduce the following matrix to Normal form and hence find it’s rank  

























2121

3011

2024

6022

 

Sol: 
Sol: let A =  

























2121

3011

2024

6022

 

𝑅1 ↔  𝑅3

























2121

6022

2024

3011

 

𝑅2 →  𝑅2 −  4𝑅1, 𝑅3 →  𝑅3 −  2𝑅1, 𝑅4 →  𝑅4 −  𝑅1

     

























1110

0000

10060

3011

 

𝐶2  →  𝐶2 +  𝐶3

    

























1100

0000

10060

3011

 

𝐶2 →  𝐶2 +  𝐶1, 𝐶4 →   𝐶4 −  3𝐶1

     























1110

0000

10060

0001

 



𝑅4 ↔  𝑅3

     























0000

1110

10060

0001

 

𝐶3 →  𝐶3 +  𝐶2, 𝐶4 →   𝐶4 −  𝐶2























0000

0010

16660

0001

 

𝑅3 →  6𝑅3 + 𝑅2





















0000

0000

16660

0001

 

𝐶2 →  
𝐶2

6
, 𝐶3  →

𝐶3

6
,   𝐶4  →  

𝐶4

−16



















0000

0000

1110

0001

 

𝐶3 →  𝐶3 −  𝐶2, 𝐶4  →   𝐶4 −  𝐶2



















0000

0000

0010

0001

 

This is of the form 








00

02I
 and the rank of the matrix = 2

 
 

The following problems are discussed in the class work: 

1 
Reduce the matrix A= 















 

1312

6204

2210
 into Normal Form and hence find its Rank. 

2 
Reduce the matrix A = 



























7036

2313

4211

1132
 into normal form and hence find its rank 

3 
Find the rank of the matrix A= 



















5786

3123

2342

0321

by reducing to normal form 

 

            Elementary matrix: 

It is a matrix obtained from a unit matrix by a single elementary transformation. 

Ex: 

















100

001

010

is a elementary matrix obtained from unit matrix by applying elementary 

transformation  𝑅1 ↔  𝑅2. 



Normal form with PAQ: 

Every elementary row (column) transformation of a matrix can be obtained by pre-

multiplication (post-multiplication) with corresponding elementary matrix. 

 

  

Ex1: 

Obtain non-singular matrices P and Q such that PAQ is of the form 








00

0rI

where A = 

















 110

321

211

and hence obtain its rank. 

Sol: 

Given, A = 

















 110

321

211

 

This can be written as A = I3 𝐴 I3 

















 110

321

211

= 

















100

010

001

 A 

















100

010

001

 

𝑅2  →  𝑅2 −  𝑅1 

















 110

110

211

= 



















100

011

001

 A 

















100

010

001

 

 

𝑅3  →  𝑅3 +  𝑅2 

















000

110

211

 = 





















111

011

001

 A 

















100

010

001

 

 

𝐶2  →  𝐶2 −  𝐶1, 𝐶3  →  𝐶3 −  2𝐶1 

















000

110

001

 = 





















111

011

001

 A 















 

100

010

211

 

 

𝐶3  →  𝐶3 −  𝐶2 

















000

010

001

 = 





















111

011

001

 A 





















100

110

111

 

This is of the form 








00

02I
 = PAQ, where P = 





















111

011

001

and Q=





















100

110

111

 

Hence rank of the matrix = 2 

Ex2: Find the non-singular matrices P and Q such that PAQ is in normal form A= 

















 

3451

1541

1631

 

Sol: 

Given, A = 















 

3451

1541

1631

 

This can be written as A = I3 𝐴 I3 















 

3451

1541

1631

= 

















100

010

001

 A 



















1000

0100

0010

0001

 

𝑅2  →  𝑅2 −  𝑅1, 𝑅3  →  𝑅3 −  𝑅1 























4220

2110

1631

= 





















101

011

001

 A 



















1000

0100

0010

0001

 

𝑅3  →  𝑅3 −  2𝑅2 





















0000

2110

1631

= 





















121

011

001

 A 



















1000

0100

0010

0001

 
𝐶2  →  𝐶2 −  3𝐶1, 𝐶3  →  𝐶3 −  6𝐶1,𝐶4  →  𝐶4 + 𝐶1  

 



















0000

2110

0001

= 





















121

011

001

 A 

















 

1000

0100

0010

1631

 

𝐶3  →  𝐶3 + 𝐶2, 𝐶4  →  𝐶4 −  2𝐶2

















0000

0010

0001

= 





















121

011

001

 A 























1000

0100

2110

7931

 

This is of the form 








00

02I
 = PAQ, where P = 





















121

011

001

and  

 Q=























1000

0100

2110

7931

 

Hence rank of the matrix = 2 

3 Find the non-singular matrices P and Q such that PAQ is in normal form 



A=[
1
2
3

 
  2

 −2
  0

  
 3
 1
4

 
−2
  3
 1

] 

Sol:  

we write A = I3 𝐴 I4 

          [
1
2
3

 
  2

 −2
  0

  
 3
 1
4

 
−2
  3
 1

] =  

















100

010

001

 A 



















1000

0100

0010

0001

 

By applying elementary transformations, 

We get 

















1000

0010

0001

=  























12/1024/1

60/1120/10

101

 A 

























1000

2550

01250

020201

 

Rank of the matrix = 3 

 

 

The following problems are discussed in the class work: 

1 

Find the non-singular matrices P and Q such that PAQ is in normal form A= 























6721

3142

4321

 

2 

Obtain non-singular matrices P and Q such that PAQ is of the form 









00

0rI

where A = 















 

113

111

111
and hence obtain its rank 

 

The inverse of a matrix by elementary transformations: (Gauss – Jordan method) 

Suppose A is a non – singular square matrix of order n. 

We write A = In A 

We apply elementary row operations only to the matrix A and the prefactor In of the 

R.H.S. we get the equation of the form In = B A 

Here B is the inverse of A.  

Ex1: Given 















 

300

020

321

, find the inverse 



Sol: 

Let A = 















 

300

020

321

 

We write A = I3 A 















 

300

020

321

 = 

















100

010

001

 A 

𝑅1  →  𝑅2 +  𝑅1 















 

300

020

301

= 

















100

010

011

A 

𝑅1  →  𝑅3 +  𝑅1 

















300

020

001

= 

















100

010

111

A 

𝑅2 →  
𝑅2

2
 , 𝑅3  →  

𝑅3

3
 

















100

010

001

= 



















3
100

0
2

10

111

A 

This is of the form I3 = B A 

The inverse of the matrix A = 



















3
100

0
2

10

111

 

 

The following problems are discussed in the class work: 

1 
Find the inverse of matrix A= 



























1011

3252

0111

1331

 using elementary transformation. 

2 Find the inverse of A = 





















021

110

312

using elementary transformation. 

 

System of Linear simultaneous equations: 

Def: An equations of the form 𝑎1𝑥1+ 𝑎2𝑥2 +  𝑎3𝑥3+ …. + 𝑎𝑛𝑥𝑛 = 𝑏 where 𝑥1, 𝑥2, … 𝑥𝑛 

are unknowns and 𝑎1, 𝑎2, … , 𝑎𝑛, b are constants is called a linear equations in n 

unknowns. 

Def: consider the system of m linear equations in n unknowns 𝑥1, 𝑥2, … 𝑥𝑛are  



33333232131

22323222121

11313212111

...

...

...

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

nn

nn

nn







 

------------------------------------------------------------ 

-------------------------------------------------- 

mnmnnnn bxaxaxaxa  ...332211  

Where a ija ’s and b1, b2,… bn are constants. The above system is called the system of 

simultaneous equations. 

The above system can be in written in the form of matrix A X = B, where A =  ija , X = 

 Tnxxx ,...,, 21 and B =  Tmbbb ,...,, 21  

If B = 0, the system is called a homogenous system of linear equations. 

The system AX = O  is always consistent since X = 0 is always a solution of AX = O. 

This solution is called the trivial solution of the system. 

If 0B , the system is called a non-homogeneous system of linear equations. 

For 0A  , 
1A
 exist. 

The system A X = B is consistent if it has a solution otherwise is said to be inconsistent. 

Non – homogenous system: 

The system AX = B is consistent i.e, it has a solution if and only if )/()( BAA    

(i) If nrBAA  )/()(  then the system has unique solution. 

(ii) If nrBAA  )/()(  then the system is consistent, but there exists infinite 

number of solutions. Giving arbitrary values to n – r of the unknowns. 

(iii) If )/()( BAA    then the system is inconsistent i.e, the system has no solution. 

Ex1: Solve the system of equations x + y + z = 9, 2x + 5y + 7z = 52, 2x + y – z = 0 

Sol: The given system of equations can be written in matrix form AX = B 

















112

752

111

















z

y

x

= 

















0

52

9

 

The augmented matrix is [A / B] = 

















 0112

52752

9111

 



𝑅2  →  𝑅2 −  2𝑅1, 𝑅3  →  𝑅3 −  2𝑅1 

















 18310

34530

9111

 

𝑅3  →  3𝑅3 +  𝑅2 

















 20400

34530

9111

 

Here 3)/(,3)(  BAA   

We have )/()( BAA   = 3 =  n 

The system is consistent and it has a unique solution. 

The equations are x + y + z = 9 

                                3y + 5z = 34 

                                       -4z = -20 => z = 5 

We have 3y + 25 = 34 => y = 3 

And x + 3 + 5 = 9 => x = 1 

Solution X = 

















z

y

x

 = 

















5

3

1

 

Ex 2: Show that the system of equations x + y + z = 4, 2x + 5y – 2z = 3, x + 7y -7 z = 5 

are not consistent. 

Sol: The given system of equations can be written in matrix form AX = B 





















771

252

111

















z

y

x

= 

















5

3

4

 

The augmented matrix is [A / B] = 





















5771

3252

4111

 

𝑅2  →  𝑅2 −  2𝑅1, 𝑅3  →  𝑅3 −  𝑅1 





















1860

5430

4111

 
 

𝑅3  →  𝑅3 −  2𝑅2 



















11000

5430

4111

 
Here 3)/(,2)(  BAA   
We have 𝜌(𝐴) ≠  𝜌( BA/ ) 

The given system is not consistent. 

Ex 3:  Find for what values of λ the equations x + y + z = 1, x + 2y + 4z = λ, x + 4y + 10 

z = λ2 have a solution and solve then completely in each case. 



Sol: The given system of equations can be written in matrix form AX = B 

















1041

421

111

















z

y

x

= 

















2

1



  

The augmented matrix is [A / B] = 

















21041

421

1111





 

𝑅2  →  𝑅2 −  𝑅1, 𝑅3  →  𝑅3 −  𝑅1 





















1930

1310

1111

2



 

𝑅3  →  𝑅3 −  3𝑅2 





















23000

1310

1111

2 



 

The given equations will be consistent iff  λ2 - 3λ + 2 = 0 => λ = 1, 2 

Case (i): if λ = 1then  

 

[A / B] = 

















0000

0310

1111

 
Here 2)/(,2)(  BAA   

The system is consistent and the number of arbitrary constants are n-r = 3-2 =1 

 the equations are x+ y + z = 1 , y + 3z = 0 

Let z = k then y = -3k and x = 2k + 1 

 

X = 

















z

y

x

 = 





















k

k

k

3

12

= k 



















1

3

2

+

















0

0

1

  

Case (ii): if λ = 2then  

 

[A / B] = 

















0000

1310

1111

 
Here 2)/(,2)(  BAA   

The system is consistent and the number of arbitrary constants are n-r = 3-2 =1 



 the equations are x+ y + z = 1 , y + 3z = 1 

Let z = k then y = 1-3k and x = 2k  

 

X = 

















z

y

x

 = 



















k

k

k

31

2

= k 



















1

3

2

+

















0

1

0

 

 

Ex 4: Find the values of a and b for which the equations x + y + z = 3, x + 2y + 2z =6, x 

+ ay +3z = b have (i) No solution (ii) a unique solution (iii) infinite number of 

solutions.  

Sol:  The given system of equations can be written in matrix form AX = B 

















31

221

111

a 















z

y

x

= 

















b

6

3

 

The augmented matrix is [A / B] = 

















ba 31

6221

3111

 

𝑅2  →  𝑅2 −  𝑅1, 𝑅3  →  𝑅3 −  𝑅1 

















 3210

3110

1111

ba
 

𝑅3  →  𝑅3 −  2𝑅2 

















 9030

3110

1111

ba
 

No solution: ρ(A) ≠ ρ(A/B) 

Then ρ(A) = 2, ρ(A/B) = 3 

So a = 3 and b  ≠ 9 

Unique solution: ρ(A) = ρ(A/B) = n(unknowns) 

Then ρ(A) = 3, ρ(A/B) = 3 

So a ≠ 3 and b  is any value 

Infinite number of solutions: ρ(A) = ρ(A/B) < n(unknowns) 

Then ρ(A) = 2, ρ(A/B) = 2 and n = 3 

So a = 3 and b = 9

 



The following problems are discussed in the class work: 

1 
Find whether the following system of equations are consistent. If so solve them 

x + 2y + 2z = 2, 3x – 2y –z = 5, 2x – 5y + 3z = -4 , x + 4y + 6z =0 

2 

Find the values of a and b for which the equations x + y + z = 3, x + 2y + 2z =6, 

x + 9y +az = b have (i) No solution (ii) a unique solution (iii) infinite number of 

solutions. 

3 Solve the system of equations x + y + z = 6, x – y + 2z = 5, 3x + y + z = 8  

 

Homogenous system: 

The system AX = O is consistent  

(i) If nrA )( then the system of equations have only trivial solution 

(ii) If nrA )( then the system of equations have an infinite number of solutions. 

Giving arbitrary values to n – r of the unknowns. 

 

 

Ex1: 
Solve the system of equations x + y +w = 0, y + z = 0, x + y +z + w = 0,  

x + y + 2z = 0 

Sol: 

The given system of equations can be written in matrix form AX = O 



















0211

1111

0110

1011



















w

z

y

x

= 



















0

0

0

0

 

The coefficient matrix is A = 



















0211

1111

0110

1011

 

𝑅3  →  𝑅3 −  𝑅1, 𝑅4  →  𝑅4 −  𝑅1 



















1200

0100

0110

1011

 

𝑅4  →  𝑅4 − 2 𝑅3 



















1000

0100

0110

1011

 

 



Rank of A = 4 and number of variables = 4 

Therefore, the system of zero solution 

The solutions are x = y = z = w = 0. 

Ex2: 
Solve completely the system of equations x + 3 y – 2z = 0, 2x – y + 4z = 0, x – 

11y + 14z = 0 

Sol: 

The given system of equations can be written in matrix form AX = O 























14111

412

231

















z

y

x

= 

















0

0

0

 

The coefficient matrix is A = 























14111

412

231

 

𝑅2  →  𝑅2 −  2𝑅1, 𝑅3  →  𝑅3 −  𝑅1 























16140

870

231

 

𝑅3  →  
𝑅3

2
 























870

870

231

 

𝑅3  →  𝑅3 −  𝑅2 





















000

870

231

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are x + 3 y – 2z = 0, -7y + 8z = 0 

Let z = k, then y = 
8𝑘

7
 ,  x = 

−10𝑘

7
 

The solution X = 

















z

y

x

= 

















k

 8k/7

(-10k)/7

=  k

















1

 8/7

(-10)/7

 

 

Ex3:  
Solve the system λx + y + z = 0, x + λy + z = 0, x + y + λz = 0 if the system has 

non –zero solution only. 

Sol: 

The given system of equations can be written in matrix form AX = O 























11

11

11

















z

y

x

= 

















0

0

0

 



The coefficient matrix is A = 























11

11

11

 

if the system has non –zero solution then det A = 0 then we have  







11

11

11

= 0

 

λ = 1, 1 and -2 

Case(i) : put λ = 1 

Then 
















111

111

111

















z

y

x

= 

















0

0

0

 

𝑅2  →  𝑅2 −  𝑅1, 𝑅3  →  𝑅3 −  𝑅1 

















000

000

111

 
Rank of A = 1 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 1 = 2 

The equations are x +  y + z = 0 

Let y = c, z = k, then x = −𝑐 − 𝑘 

The solution X = 

















z

y

x

= 

















k

 c

k-c-

=  c  

















0

 1

1-

+ k 

















1

0

1-

 

Case (ii): put λ = -2 then we have  























211

121

112

















z

y

x

= 

















0

0

0

 

𝑅1  ↔  𝑅2 























211

112

121

 

𝑅2  →  𝑅2 +  2𝑅1, 𝑅3  →  𝑅3 −  𝑅1 























330

330

121

 



𝑅3  →  𝑅3 +  𝑅2 





















000

330

121

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are x – 2y + z = 0, - 3y  + 3z = 0 => y = z 

Let z = k, then y = 𝑘 ,  x = 𝑘 

The solution X = 

















z

y

x

= 

















k

k

k

=  k

















1

 1

1

 
 

 

 

The following problems are discussed in the class work: 

1 
Solve completely the system of equations x + 2y – 2z + 3w = 0, x – 2y + z – w = 

0, 4x + y – 5z + 8w = 0, 5x – 7y + 2z – w = 0 

2 
Determine the values of λ for which the following set of equations may possess 

non – trivial solution: 3x + y – λz = 0, 4x – 2y – 3z = 0, 2λx + 4y + λz = 0 

 

Solutions of linear systems – Direct methods: 

 

1. Gauss Elimination method: 

Ex1: Solve the system of equations 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y +z = 4 

Sol:  The given system of equations can be written in matrix form AX = B 



















121

132

213

















z

y

x

= 



















4

3

3

 

The augmented matrix is [A / B] = 



















4121

3132

3213

 

𝑅1  ↔  𝑅3 



















3213

3132

4121

 



𝑅2  →  𝑅2 −  2𝑅1, 𝑅3  →  𝑅3 −  3𝑅1 





















9150

11370

4121

 

𝑅3  →  7𝑅3 −  5𝑅2 





















8800

11370

4121

 

The equations are x + y + z = 4 

                                -7y - 3z = -11 

                                       -8z = -8 => z = -1 

We have -7y + 3 = -11=> y = 2 

And x + 2 - 1 = 4 => x = 1 

Solution X = 

















z

y

x

 = 

















1

2

1

 

 

 

2. Gauss – Jordan method:  

Ex1: 
Solve the system of equations 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 

16 

Sol: 

The given system of equations can be written in matrix form AX = B 

















941

323

112

















z

y

x

= 

















16

18

10

 

The augmented matrix is [A / B] = 

















16941

18323

10112

 

𝑅1  ↔  𝑅3 

















10112

18323

16941

 

𝑅2  →  𝑅2 −  3𝑅1, 𝑅3  →  𝑅3 −  2𝑅1 





















221770

3024100

4121

 

𝑅1  →  5𝑅1 +  𝑅2, 𝑅3  →  10𝑅3 −  7𝑅1 























10200

3024100

101901

 



𝑅1  →  2𝑅1 −  19𝑅3, 𝑅2  →  𝑅2 −  12𝑅3 





















10200

900100

7001

 
 

𝑅2  →  
𝑅2

−10
, 𝑅3  →  

𝑅3

−2
 



















5100

9010

7001

 

Which gives x = 7, y = -9, z = 5

 

 

Def: Consider the system of equations 

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa







 
Where the diagonal coefficients are not zero and are large compared to other 

coefficients, such system is called a diagonally dominant system. 

 

Simple iteration methods can be devised for systems in which the coefficients of the 

leading diagonal are large compared to others. We now explain three such methods 

3. Gauss Jacobi iteration method: 

Ex1: 
Use gauss - jacobi iteration method to solve the equations 10x + y - z = 11.19, x + 

l0y + z = 28.08, - x + y + l0z = 35.61, correct to two decimal places.  

Sol: The given system is diagonally dominant, so we can write 

x = 
1

10
 (11.19 − 𝑦 + 𝑧) 

y =  
1

10
 (28.08 − 𝑥 − 𝑧) 

z = 
1

10
 (35.61 + 𝑥 − 𝑦) 

take the intial values x = 0, y = 0, z = 0 then we get 

Variable Ist approx. IInd approx. 
IIIrd 

approx. 

IVth 

approx. 

Vth 

approx. 

x 1.119 1.19 1.22 1.23 1.23 

y 2.808 2.24 2.35 2.34 2.34 

z 3.561 3.39 3.45 3.45 3.45 

The solution of the given system of equations is x = 1.23, y = 2.34, z = 3.45. 

 

4. Gauss Seidel Iteration method: 

Ex1: 
Use gauss - seidel iteration method to solve the equations 27x + 6y - z = 85, 6x + 

15y + 2z = 72, x + y + 54z = 110 

Sol: The given system is diagonally dominant, so we can write 



x = 
1

27
 (85 − 6𝑦 + 𝑧) 

y =  
1

15
 (72 − 6𝑥 − 2𝑧) 

z = 
1

54
 (110 − 𝑥 − 𝑦) 

take the intial values y = 0, z = 0 then we get 

Variable Ist approx. IInd approx. 
IIIrd 

approx. 

IVth 

approx. 

Vth 

approx. 

x 3.15 2.43 2.426 2.425 2.425 

y 3.54 3.57 3.572 3.573 3.573 

z 1.91 1.926 1.926 1.926 1.926 

The solution of the given system of equations is x = 2.425, y = 3.573, z = 1.926.  

Ex2: 
Use gauss - seidel iteration method to solve the equations 20x + y - 2z = 17, 3x + 

20y - z = -18, 2x - 3y + 20z = 25 

Sol: The given system is diagonally dominant, so we can write 

x = 
1

20
 (17 − 𝑦 + 2𝑧) 

y =  
1

20
 (−18 − 3𝑥 + 𝑧) 

z = 
1

20
 (25 − 2𝑥 + 3𝑦) 

take the intial values y = 0, z = 0 then we get 

 

Variable Ist approx. IInd approx. 
IIIrd 

approx. 

IVth 

approx. 

x 0.8500 1.0025 1 1 

y -1.0275 -0.9998 -1 -1 

z -1.0109 0.9998 1 1 

The solution of the given system of equations is x = 1, y = - 1, z = 1.  

Ex 3: Apply Gauss-Seidel iterative method to solve the following system of equations 

𝑥 + 10𝑦 + 𝑧 = 6,  10𝑥 + 𝑦 + 𝑧 = 6,  𝑥 + 𝑦 + 10𝑧 = 6   
Sol: the given system is diagonally dominated 

So we can write as x = 
6−𝑦−𝑧

10
 

                               y = 
6−𝑧−𝑥

10
 

                               z = 
6−𝑦−𝑥

10
 

take the initial values are y = 0, z = 0 

 I 

approx. 

II 

approx. 

III 

approx. 

IV 

approx. 

x 0.6 0.4974 0.4999 0.5 

y 0.54 0.5017 0.5 0.5 

z 0.486 0.4992 0.5 0.5 

 The solution is x = 0.5 , y = 0.5, z = 0.5 

 

The following problems are discussed in the class work: 

1 Use Gauss elimination method, solve completely the system of equations 



2x + y +2z + w = 6, 6x – 6y + 6z + 12w = 36, 4x + 3y + 3z - 3w = -1,  

2x + 2y - z + w = 10 

2 
Use Gauss Jordan method, solve the system of equations 10x + y + z = 12, x + 

10y – z = 10 and x – 2y + 10z = 9 

3 
Use Gauss Jacobi method, solve the system of equations 10x + y + z = 12, 2x + 

10y + z = 13 and 2x + 2y + 10z = 14 

4 
Use gauss - seidel iteration method to solve the equations 8x -3y + 2z = 20, 4x + 

11y - z = 33, 6x + 3y + 12z = 35 

 

Application: Finding the current in an Electrical circuit: 

Consider circuits made up of  

(i) three passive elements—resistance, inductance, capacitance and  

(ii)  an active element—voltage source which may be a battery or a generator. 

Ohm’s law: the current through a conductor between two points is directly 

proportional to the potential difference across the two points. 

 Kirchhoff’s laws: The formulation of differential equations for an electrical circuit 

depends on the following two Kirchhoff’s laws which are of cardinal importance :  

I. The algebraic sum of the voltage drops around any closed circuit is equal to the 

resultant electromotive force in the circuit.  

II.  The algebraic sum of the currents flowing into (or from) any node is zero. 

Electrical circuit: a simple electric circuit is a closed connection of Batteries, 

Resisters, and wires. An electrical circuit consists of voltage loops and current nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT – 2 

EIGEN VALUES AND VECTORS AND QUADRATIC FORMS 

 

If A is a nn  matrix, then 0


X  is said to be an eigenvector of A if there exists a 

scalar λ such that XX A  

Here The scalar   is called the eigenvalue or characterstic value or proper value of 

A and X  is called the eigenvector or characerstic vector or proper vector 

corresponding to the eigenvalue  . 

How do I find eigenvalues of a square matrix? 

If A is a nn  matrix.  Let X be an Eigen vector of A corresponding to the eigen 

value λ 

A X = λ X 

A X – λ X = 0 

A X – λ I X = 0 

(A – λ I) X = 0 

This is a homogenous system of n equations in n unknowns. 

The system has a non-zero solution X, if and only if 0)det(  IA   

Here det( A – λI) = 0 is also called the characteristic equation of A. this will be a 

polynomial equation in λ of degree n. 

Ex1: Find the eigen values and eigen vectors of the following matrix [
5 −2  0

−2   6 2
0 2   7

] 

Sol: The characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 













720

262

025

=0 

 𝜆3 −  18𝜆2 + 99𝜆 − 162 =  0 

 𝜆 = 3, 6, 9  
The eigen values of A are 3, 6, 9 

Case(i): put 𝜆 = 3 

We have [
2 −2  0

−2   3 2
0 2   4

] 

















z

y

x

= 

















0

0

0

 



𝑅2  →  𝑅2 +  𝑅1 















 

420

210

022

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 −  2𝑅2 















 

000

210

022

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are 2x - 2y = 0, y + 2z = 0 

Let z = k, then y = −2𝑘 ,  x = 2k 

The solution X = 

















z

y

x

= 

















k

2k -

2k

=  k

















1

 2-

2

 

The  X = 
















1

 2-

2

 is the eigen vector corresponding to the eigen value λ = 3. 

Case(ii): put 𝜆 = 6 

We have [
−1 −2  0
−2   0 2
0 2   1

] 

















z

y

x

= 

















0

0

0

 

𝑅2  →  𝑅2 −  2𝑅1 















 

120

240

021

















z

y

x

= 

















0

0

0

 

𝑅3  →  2𝑅3 −  𝑅2 















 

000

240

021

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are -x - 2y = 0, 4y + 2z = 0 

Let y = k, then z = −2𝑘 ,  x = -2k 



The solution X = 

















z

y

x

= 

















 k2

k 

2k-

=  k

















 2

 1

2-

 

The  X = 
















 2

 1

2-

 is the eigen vector corresponding to the eigen value λ = 6. 

Case(iii): put 𝜆 = 9 

We have [
−4 −2  0
−2  −3 2
0 2  −2

] 

















z

y

x

= 

















0

0

0

 

𝑅2  →  2𝑅2 −  𝑅1 [
−4 −2  0
0  −4 4
0 2  −2

]

















z

y

x

= 

















0

0

0

 

𝑅3  →  2𝑅3 +  𝑅2 [
−4 −2  0
0  −4 4
0 0  0

]

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are - 4x - 2y = 0, -4y + 4z = 0 

Let y = k, then z = 𝑘 ,  x = k/2 

The solution X = 

















z

y

x

= 

















k

k 

k/2

=  k

















1

 1

1/2

 

The  X = 
















1

 1

1/2

 is the eigen vector corresponding to the eigen value λ = 9.

 

Ex2: 
Find the eigen values and eigen vectors of the matrix [

6 −2  2
−2   3 −1
2 −1   3

] 

Sol: The characterstic equation of A is |𝐴 − 𝜆𝐼| = 0 

 

312

132

226











=0 

 (𝜆 − 2 ) (𝜆2 − 10𝜆 + 16) =  0 



 𝜆 = 2, 2, 8  
The eigen values of A are 2, 2, 8. 

Case(i): put 𝜆 = 2 

We have [
4 −2  2

−2  1 −1
2 −1  1

] 

















z

y

x

= 

















0

0

0

 

𝑅2  →  2𝑅2 +  𝑅1, 𝑅3  →  2𝑅3 −  𝑅1,   [
−4 −2  2
0  0 0
0  0  0

]

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 1 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 1 = 2 

The equation is - 4x - 2y + 2z = 0,  

Let y = k, z = c then x = 
𝑘

2
−  

𝑐

2
 

The solution X = 

















z

y

x

= 






















c

c

k 
22

k

=  k  

















0

 1

1/2

+ c

















1

 0

1/2-

 

The eigen vector o f A corresponding to the eigen value 𝜆 = 2 is 

















0

1

2/1

, 

















1

0

2/1

 

Case(ii): put 𝜆 = 8 

We have [
−2 −2  2
−2  −5 −1
2 −1 −5

] 

















z

y

x

= 

















0

0

0

 

𝑅2  →  𝑅2 −  𝑅1, 𝑅3  →  𝑅3 +  𝑅1,   [
−2 −2  2
0  −3 −3
0 −3 −3

] 

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 −  𝑅2 [
−2 −2  2
0  −3 −3
0 0 0

] 

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 



The equations are – 3y – 3z = 0, - 2x - 2y + 2z = 0 

Let z = k, then y = −𝑘 ,  x = 2k 

The solution X = 

















z

y

x

= 

















k

k -

2k

=  k



















1

1

2

 

The eigen vector o f A corresponding to the eigen value 𝜆 = 8  is 



















1

1

2

 

 

The following problems are discussed in the class work: 

1 Find the eigen values and eigen vectors of the matrix [
8 −6  2

−6   7 −4
2 −4   3

] 

2 Find the eigen values and eigen vectors of the matrix [
1 0 −1
1   2 1
2 2   3

] 

 

Properties of Eigen values: 

Theorem1: the sum of the eigen values of a square matrix is equal to its trace and                                                    

product of the eigen values is equal to its determinant. 

Proof: the characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 













nnnn

n

n

aaa

aaa

aaa

...

......

......

...

...

21

22221

11211

=0 

By expanding this, we get 

(a11 – λ) (a22 – λ) … (ann – λ) – a12 ( a polynomial of degree n – 2) + a13 ( a polynomial of 

degree n – 2) + . . .  = 0. 

i.e, (-1)n (λ - a11) (λ – a22) … (λ – ann) + a polynomial of degree (n – 2) = 0 

i.e, (-1)n [λn – (a11 + a22 + … + ann) λ
n-1 + a polynomial of degree (n-2)] + a polynomial of 

degree (n-2) in λ = 0. 

i.e, (-1)n λn + (-1)n+1 (Trace A) λn-1 + a polynomial of degree (n-2) in λ = 0 



if λ1, λ2, … , λn are the roots of this equation, 

Sum of the roots = − 
(−1)𝑛+1 𝑇𝑟(𝐴)

(−1)𝑛  = Tr( A ) 

 We have |𝐴 − 𝜆𝐼| = (-1)n λn + . . . + a0 

 Put λ = 0. Then |𝐴| =  𝑎0 

            (-1)n λn + an-1 λ
n-1 +  an-2 λ

n-2 + … + a0 = 0 

 => Product of the roots = 
(−1)𝑛𝑎0 

(−1)𝑛  = 𝑎0 = |𝐴| = det 𝐴. 

Theorem2: if λ is an eigen value of A corresponding to the eigen vector X, then 𝝀𝒏 is 

eigen value of 𝑨𝒏 corresponding to the eigen vector X. 

Proof: Since λ is an eigen value of A corresponding to the eigen vector X,  

Then AX = λX 

 premultiply by A in above, A(AX) = A(λX) 

             A2 X  = λ (AX) = λ (λX) = λ2X 

 Hence λ2 is an eigen value of  A2 with X itself as the corresponding eigen vector. 

The theorem is true for n = 2 

Let the result is true for n = k i.e,  Ak X = λkX 

premultiply by A in above, then  A(Ak X) = 𝐴(λkX) 

  Ak+1 X = λk+1X 

            Hence λk+1is an eigen value of  Ak+1with X itself as the corresponding eigen vector. 

 Hence by mathematical induction, the theorem is true for all positive intergers n. 

Theorem3: A square matrix A and its transpose  𝐀𝐓 have the same eigen values. 

Proof:  we have (𝐴 − 𝜆𝐼)𝑇 =  𝐴𝑇 −  𝜆𝐼𝑇 = 𝐴𝑇 −  𝜆𝐼 

                           |(𝐴 − 𝜆𝐼)𝑇| = |𝐴𝑇 −  𝜆𝐼| 

                           |𝐴 − 𝜆𝐼| = |𝐴𝑇 −  𝜆𝐼| 

Therefore,  |𝐴 − 𝜆𝐼| = 0 if and only if |𝐴𝑇 −  𝜆𝐼| = 𝟎 



Thus the eigen values of A and 𝐴𝑇are same. 

Theorem4: if λ is an eigen value of a non-singular matrix A corresponding to the 

eigen vector X, then 𝛌−𝟏 is an eigen value of 𝐀−𝟏and corresponding eigen vector X 

itself. 

Proof: since A is non- singular and product of the eigen values is equal to |𝐴|, so none of 

the eigen values of A is 0. 

 Since λ is an eigen value of A corresponding to the eigen vector X,  

Then AX = λX 

 premultiply by 𝐴−1 in above, 𝐴−1 (AX) = 𝐴−1 (λX) 

            I X  = λ (𝐴−1 X) = λ (𝐴−1 X)  

              𝜆−1X = 𝐴−1 X, where λ ≠ 0 

 Hence by definition, then λ−1 is an eigen value of A−1and corresponding eigen vector X 

Theorem5: The eigen values of a triangular matrix are just the diagonal elements of 

the matrix. 

Proof: let A = 























nn

n

n

a

aa

aaa

..000

......

......

...0

...

222

11211

 

Given A is a triangular matrix. 

The characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 













nn

n

n

a

aa

aaa

...00

......

......

...0

...

222

11211

=0 

 (a11 - λ) (a22 - λ) … (ann - λ) = 0 

 λ = a11, a22, … , ann 

The Eigen values of A are a11, a22, … , ann just the diagonal elements of the matrix. 

The Eigen values of a triangular matrix are just the diagonal elements of the matrix. 



 

 

Algebraic and geometric multiplicity of a characteristic root: 

Def: suppose A is square matrix. If λ is a characteristic root of order t of the characteristic 

equation of A, then t is called the algebraic multiplicity of λ 

Def: if s is the number of linearly independent characteristic vectors corresponding to the 

characteristic vector λ, then s is called the geometric multiplicity of λ. 

Note: s ≤ t 

Diagonalization of a matrix:  

Def: A matrix A is diagonalizable if there exists and invariable matrix P such that 

𝑃−1𝐴𝑃 = 𝐷, where D is a diagonal matrix. Also the matrix P is then said to diagonalize 

A or transform A to diagonal form. 

Modal and Spectral matrices: 

Def:  The matrix P in 𝑃−1𝐴𝑃 = 𝐷 which diagonalize the square matrix A is called the 

Modal matrix of A and the resulting diagonal matrix D is known as Spectral matrix. 

Note: 1. If the eigen values of A are all distinct, then it has n linearly independent eigen 

vectors and so it is diagonalizable. 

2. Suppose A is a real symmetric matrix with n pair wise distinct eigen values 

𝜆1, 𝜆2, … , 𝜆𝑛. Then the corresponding eigen vectors  𝑋1, 𝑋2, … , 𝑋𝑛  are pair wise 

orthogonal. 

Hence if P = (𝑒1, 𝑒2, … , 𝑒𝑛), where 𝑒1 =  
𝑋1

‖𝑋1‖
 , 𝑒2 =  

𝑋2

‖𝑋2‖
 , … , 𝑒𝑛 =  

𝑋𝑛

‖𝑋𝑛‖
   then P is a 

orthogonal matrix. 

Calculation of powers of a matrix: 

We have 𝐷 =  𝑃−1𝐴𝑃 

Then 𝐷2 =  (𝑃−1𝐴𝑃) (𝑃−1𝐴𝑃) 

    =>       =  𝑃−1𝐴2𝑃 

Similarly, 𝐷3 =  𝑃−1𝐴3𝑃  

In general, 𝐷𝑛 =  𝑃−1𝐴𝑛𝑃 

Pre-multiply by P and post-multiply by 𝑃−1 then  

we get 𝐴𝑛 = 𝑃 





















n

n

n

n







0000

...............

0...00

0...00

2

1

𝑃−1 

 

Ex1: If A = [
1 1  1
0   2 1

−4 4  3
] then diagonalize the A and also find 𝐴8 

Sol : Let A = [
1 1  1
0   2 1

−4 4  3
] 



The characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 













344

120

111

=0 

 (1 −  𝜆)( 2 −  𝜆)(3 −  𝜆) =  0 

 𝜆 = 1, 2, 3  
The eigen values of A are 1, 2, 3 

Case(i): put 𝜆 = 1 

We have [
0 1  1
0  1 1

−4 4  2
] 

















z

y

x

= 

















0

0

0

 

𝑅1  ↔  𝑅3 [
−4 4  2
0  1 1
0 1  1

] 

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 −  𝑅2 [
−4 4  2
0  1 1
0 0  0

]

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are -4x - 4y + 2z = 0, y + z = 0 

Let z = k, then y =−𝑘 ,  x = -k / 2 

The solution X = 

















z

y

x

= 

















k

k -
2

k-

=  
−𝑘

2

















 2

 2

1

 

The  X1 = 
















 2

 2

1

 is the eigen vector corresponding to the eigen value λ = 1. 

Case(ii): put 𝜆 = 2 

We have [
−1 1  1
0 0 1

−4 4  1
] 

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 −  4𝑅1 [
−1 1  1
0 0 1
0 0 −3

] 

















z

y

x

= 

















0

0

0

 



𝑅3  →  𝑅3 + 3𝑅2 [
−1 1  1
0 0 1
0 0 0

]

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are - x + y + z = 0, z = 0 

Let y = k, then x = k 

The solution X = 

















z

y

x

= 

















0

k 

k

=  𝑘

















0

 1

1

 

The  X2 = 
















0

 1

1

 is the eigen vector corresponding to the eigen value λ = 2 

Case(iii): put 𝜆 = 3 

We have [
−2 1  1
0 −1 1

−4 4  0
] 

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 −  2𝑅1 [
−2 1  1
0 −1 1
0 2 −2

] 

















z

y

x

= 

















0

0

0

 

𝑅3  →  𝑅3 + 2𝑅2 [
−2 1  1
0 −1 1
0 0 0

] 

















z

y

x

= 

















0

0

0

 

This is an Echelon form. 
Rank of A = 2 and number of variables = 3 

Therefore, the system of infinite number of non-zero solutions 

The number of arbitrary constants are n – r = 3 – 2 = 1 

The equations are -2x + y + z = 0, - y + z = 0 

Let z = k, then y = 𝑘 ,  x = k 

The solution X = 

















z

y

x

= 

















k

k 

k

=  𝑘

















1

 1

1

 



The  X3 = 
















1

 1

1

 is the eigen vector corresponding to the eigen value λ = 3 

Let P = [ X1, X2, X3 ] =  

  
















 102

112

111

 

Then consider P-1 A P = 

 

[
−1 1  0
4  −3 −1

−2 2  1
] [

1 1  1
0   2 1

−4 4  3
] [

1 1  1
2  1 1

−2 0  1
] = [

1 0  0
0   2 0
0 0  3

]= D 

 

Therefore A is diagonalizable. 

Find A8: A8 = P D8 P-1 =  

[
1 1  1
2  1 1

−2 0  1
] [

1 0  0
0  256 0
0 0  6561

] [
−1 1  0
4 −3 −1

−2 2  1
] =  [

−12099 12355  6305
−12100  12356 6305
−13120 13120 6561

]

                                    

The following problems are discussed in the class work: 

1 Diagonalize the matrix [
8 −8 −2
4  −3 −2
3 −4   1

] 

2 Diagonalize the matrix [
3 −1 1

−1  5 −1
1 −1   3

]and also find A4 

 

The Cayley-Hamilton theorem:  

Every square matrix satisfies its own characteristic equation. 

           Proof: Let  p(λ) = p0 + p1λ + ... + pn-1λ
n-1 + pnλ

n. 

  Let B(λ) be the adjugate matrix of the square matrix A - λI, which may be          

considered as a polynomial in λ and with matrix coefficients  

  B(λ) = B0 + λB1 + ... + λq-1Bq-1 + λqBq, where Bq are constant matrices. 

            By the formula (adjA) A = (detA) I, we have 

 B(λ)(A - λI) = p(λ)I = p0I + p1λI + ... + pn-1λ
n-1I + pnλ

nI. 

http://algebra.math.ust.hk/determinant/03_properties/lecture2.shtml#adjugate
http://algebra.math.ust.hk/determinant/03_properties/lecture2.shtml#adjformula


          On the other hand, we have 

B(λ)(A - λI) = B0A + λ(B1A - B0) + ... + λq(BqA - Bq-1) - λ
q+1Bq. 

          Thus we get q = n -1 and 

    B0A = p0I,  

    B1A - B0 = p1I,  

      : 

    Bn-1A - Bn-2 = pn-1I,  

    - Bn-1 = pnI. 

          Multiplying powers of A on the right sides, we get 

    B0A = p0I,  

    B1A
2 - B0A = p1A,  

     : 

    Bn-1A
n - Bn-2A

n-1 = pn-1A
n-1,  

    - Bn-1A
n = pnA

n. 

            Adding all the equalities together, we get 

  p(A) = p0I + p1A + ... + pn-1A
n-1 + pnA

n = O. 

   Applications of Cayley – Hamilton theorem: 

1. To find the inverse of a matrix 

2. To find higher powers of the matrix 

 

Ex1: 
Verify Cayley Hamilton theorem and find the inverse of 

















 201

335

212
 

Sol: The characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 

201

335

212











=0 

 (𝜆3 −  3𝜆2 − 7𝜆 − 1) =  0 

Consider  𝐴3 −  3𝐴2 − 7𝐴 − 𝐼 

=  [
36 22 23

101 64 60
−7 −3 −7

] + [
−21 −15 −9
−66 −42 −39

0 3 −6

] +  [
−14 −7 −14
−35 −21 −21

7 0 14
] + [

−1 0 0
0 −1 0
0 0 −1

] 

= [
0 0 0
0 0 0
0 0 0

] 

Cayley Hamilton theorem is verified. 

Consider 𝐴3 −  3𝐴2 − 7𝐴 − 𝐼 = 0 



𝐴−1(𝐴3 −  3𝐴2 − 7𝐴 − 𝐼) = 0  

𝐴−1 = 𝐴2 − 3𝐴 − 7𝐼 =  























113

427

326
 

Ex2: 
If A =  [

2 1 1
0 1 0
1 1 2

] , find the value of the matrix 𝐴8 −  5𝐴7 + 7𝐴6 − 3𝐴5 + 𝐴4 − 5𝐴3 +

8𝐴2 − 2𝐴 + 𝐼 

Sol:  The characteristic equation of A is |𝐴 − 𝜆𝐼| = 0 

 

211

010

112









=0 

 (𝜆3 −  5𝜆2 + 7𝜆 − 3) =  0 
By Cayley – Hamilton theorem, we have  

 (𝐴3 −  5𝐴2 + 7𝐴 − 3𝐼) =  0 

Consider, 𝐴8 −  5𝐴7 + 7𝐴6 − 3𝐴5 + 𝐴4 − 5𝐴3 + 8𝐴2 − 2𝐴 + 𝐼 

             = 𝐴5(𝐴3-5𝐴2 + 7𝐴 − 3𝐼)+A(𝐴3-5𝐴2 + 8𝐴 − 2𝐼) + I 

             = A[(𝐴3-5𝐴2 + 7𝐴 − 3𝐼) + (A+I)] + I 

             = A(𝐴3-5𝐴2 + 7𝐴 − 3𝐼) + 𝐴2 + 𝐴 + 𝐼 

             = 𝐴2 + 𝐴 + 𝐼 

             =   [
5 4 4
0 1 0
4 4 5

] +  [
2 1 1
0 1 0
1 1 2

] + [
1 0 0
0 1 0
0 0 1

] =  [
8 5 5
0 3 0
5 5 8

] 

 

The following problems are discussed in the class work: 

1 

Verify Cayley- Hamilton theorem for the matrix and also find the inverse of the 

matrix [
8 −8 −2
4  −3 −2
3 −4   1

] 

2 Verify Cayley – Hamilton theorem for A = [
1 1 3
1  3 −3

−2 −4  −4
]and also find A4 

 

 

 

 

 

 

 



Quadratic forms 

A homogenous expression of the second degree in any number of variables is called a 

quadratic form. 

Ex: 3x2 + 5xy -2y2 is a quadratic form in two variables x and y. 

Def:  An expression of the form Q = 𝑋𝑇𝐴 𝑋 =  ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 𝑛  
𝑖=1 𝑥𝑖𝑥𝑗, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝑗

′ 𝑠  are 

constants, is called a quadratic form in n variables 𝑥1, 𝑥2, … , 𝑥𝑛. If the constants 𝑎𝑖𝑗
′ 𝑠 are 

real numbers it is called a real quadratic form. 

i.e, 𝑋𝑇𝐴 𝑋 =  ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 𝑛  
𝑖=1 𝑥𝑖𝑥𝑗 

          = [𝑥1 𝑥2 … 𝑥𝑛] 



















nnnn

n

n

aaa

aaa

aaa

...

............

...

...

21

22221

11211



















nx

x

x

...

2

1

 

Where X =  



















nx

x

x

...

2

1

 and A is known as the matrix of the quadratic form. 

Matrix of Quadratic form: any quadratic form Q can be expressed as Q = 𝑋𝑇𝐴 𝑋 

The symmetric matrix A is called the matrix of the quadratic form Q and |𝐴| is called the 

discriminant of the quadratic form. 

If |𝐴| = 0, the quadratic form is called singular, otherwise non-singular. In other words,       

if the rank of A is r < n then the quadratic form is singular otherwise non-singular. 

Consider the quadratic form x2 + 2y2 + 7z2 + 2xy + 6xz + 10yz 

Write the coefficients of square terms along the diagonal and divide the coefficients of 

the product terms xy, xz, yz by 2 and write them at the appropriate places. 

            



Thus the matrix of the above quadratic form is  

 [
1 2/2 6/2

2/2  2 10/2
6/2 10/2   7

] =  [
1 1 3
1  2 5
3 5   7

] 

Rank of the Quadratic form: 

Let 𝑋𝑇𝐴 𝑋 be a quadratic form. The rank r of A is called the rank of the quadratic form. 

Canonical from (or) Normal form of a Quadratic form: 

Let 𝑋𝑇𝐴 𝑋 be a quadratic form in n variables. Then there exists a real non – singular 

linear transformation X = PY which transform 𝑋𝑇𝐴 𝑋 to another quadratic form of type 

𝑌𝑇𝐷 𝑌 =  𝜆1𝑦1
2 + 𝜆2𝑦2

2 +  … + 𝜆𝑛𝑦𝑛
2 ,  then 𝑌𝑇𝐷 𝑌  is called the Canonical form of 

𝑋𝑇𝐴 𝑋. Here D = diag[𝜆1 , 𝜆2 , … , 𝜆𝑛 ] 

Def: Let Q = = 𝑋𝑇𝐴 𝑋 be a quadratic form in n variables 𝑥1, 𝑥2, … , 𝑥𝑛 , 

Index (s): The number of positive terms in its canonical form is called the index of the 

quadratic form.  

Signature: signature of the quadratic form is the difference of positive and negative 

terms in the canonical form.  

 i.e, s – ( r – s) = 2s – r is called the signature of the quadratic form. 

Nature of the quadratic form: If the rank of the matrix A is r and the signature of the 

quadratic form Q is s, then the quadratic form is said to be  

(i) Positive definite:  if r = n and s = n (or) if all the eigen values of A > 0. 

(ii) Negative definite: if r = n and s = 0 (or) if all the eigen values of A < 0. 

(iii) Positive semi definite: if r < n and s = r (or) if all the eigen values of A > 0 and at   

least one eigen value = 0. 

(iv) Negative semi definite: if r <n and s = 0 (or) if all the eigen values of A < 0 and at 

least one eigen value = 0. 

(v)  Indefinite:  in all other cases (or) if some of the eigen values of A are positive and     

others negative. 

 

Methods of Reduction of Quadratic form to Canonical form (or Sum of Squares 

form) 

Any quadratic form may be reduced to canonical form by using following methods: 

1. Diagonalization (Reduction to canonical form using Linear transformation) 

2. Orthogonalisation (Reduction to canonical form using orthogonal transformation) 

3. Lagrange’s reduction. 

 

Reduction to canonical form using Linear transformation (Diagonalisation): 

Let 𝑋𝑇𝐴 𝑋 be a quadratic form, where A is the matrix of the quadratic form. 

Let X = PY be the  non – singular linear transformation  

Then we have 𝑋𝑇𝐴 𝑋 =  (𝑃𝑌)𝑇𝐴 (𝑃𝑌) 

   =  (𝑌𝑇𝑃𝑇)𝐴(𝑃𝑌) 



   =  𝑌𝑇(𝑃𝑇𝐴𝑃)𝑌 

   =   𝑌𝑇  𝐷 𝑌, where D = 𝑃𝑇𝐴𝑃 

Here  𝑌𝑇  𝐷 𝑌  is called the canonical form of the quadratic form. 

Congruent matrices: the matrices D and A are congruent matrices and the 

transformation X = PY is known as congruent transformation. 

Working rule to reduce Quadratic form to canonical form: 

Step1: write the symmetric matrix of the given quadratic form. 

Step 2: write the matrix A in the following relation: 𝐴 𝑛×𝑛= I𝑛 𝐴 I𝑛. 

Step 3: reduce the matrix A on left hand side to a diagonal matrix (i) by applying 

elementary row operations on the left identity matrix and on A on left hand side (ii) by 

applying elementary column operations on the right identity matrix and on A on left hand 

side. 

Step 4: by these operations, A = IAI will be reduced to the form D = 𝑃𝑇𝐴𝑃 

             Where D is the diagonal matrix and P is the matrix used in the linear 

transformation. 

The canonical form is given by 

  𝑌𝑇  𝐷 𝑌 =  [𝑦1 𝑦2 … 𝑦𝑛] 



















nd

d

d

...00

............

0...0

0...0

2

1



















ny

y

y

...

2

1

   

                          = 𝑑1𝑦1
2 + 𝑑2𝑦2

2 +  … +  𝑑𝑛𝑦𝑛
2

 
Ex1: 

Reduce the following quadratic form to normal form and hence find its rank, index, 

signature and nature: 10x2 + 2y2 + 5z2  + 6yz - 10zx - 4xy 

Sol:  

The matrix of the Quadratic form is 























535

322

5210

 

We write A = I3 𝐴 I3 























535

322

5210

 =  

















100

010

001

A

















100

010

001

 

𝑅2  →  5𝑅2 +  𝑅1, 𝑅3  →  2𝑅3 +  𝑅1,   















 

540

1080

5210

 =  

















201

051

001

A

















100

010

001

 

𝐶2  →  5𝐶2 +  𝐶1, 𝐶3  →  2𝐶3 +  𝐶1,   

















10200

20400

0010

 =  

















201

051

001

A

















200

050

111

 



𝑅3  →  2𝑅3 −  𝑅2,

 
















000

20400

0010

 =  

















 451

051

001

A

















200

050

111

 

𝐶3  →  2𝐶3 −  𝐶2,

 
















000

20400

0010

 =  

















 451

051

001

A



















400

550

111

 

This is of the form D = PT A P, where D =  

















000

0400

0010

 and P = 



















400

550

111

 

The linear transformation is X = PY  

i.e, 
















z

y

x

= 


















400

550

111

















3

2

1

y

y

y

 

The quadratic form can be to the  canonical form is YT A Y = 10 𝑦1
2 + 40 𝑦2

2 

 Rank  = 2 

Index =  2 

Signature = 2 (2) – 2 = 2 

Nature = Positive semi-definite. 

Ex2: Reduce the quadratic form to the canonical form  3x2 + 2y2 + 3z2 – 2xy – 2yz 

Sol:  

The matrix of the Quadratic form is 























310

121

013

 

We write A = I3 𝐴 I3 























310

121

013

 =  

















100

010

001

A

















100

010

001

 

𝑅2  →  3𝑅2 +  𝑅1, 𝐶2  →  3𝐶2 + 𝐶1,  





















330

350

003

 =  

















100

031

001

A

















100

030

011

 

𝑅3  →  5𝑅3 +  3𝑅2, 𝐶3  →  5𝐶3 +  3𝐶2,  

















600

050

003

 =  

















593

031

001

A

















500

930

311

 



𝑅1

√3
,

𝐶1

√3
,  

𝑅2

√5
,

𝐶2

√5
,

𝑅3

√6
,

𝐶3

√6
   

















100

010

001

 =  























6

5

6

9

6

3

0
5

3

5

1

00
3

1

A























6

5
00

6

9

5

3
0

6

3

5

1

3

1

 

This is of the form D = PT A P 

The canonical form is  𝑦1
2 +  𝑦2

2 + 𝑦3
2 

The linear transformation is X = PY  

i.e, 
















z

y

x

= 






















6

5
00

6

9

5

3
0

6

3

5

1

3

1

















3

2

1

y

y

y

 

 

The following problems are discussed in the class work: 

1 Reduce the quadratic form to the canonical form x2 + y2 + 2z2 – 2xy + 4zx + 4yz 

2 
Reduce the following quadratic form to normal form and hence find its rank, 

index, signature and nature: 10x2 + 2y2 + 5z2  - 4xy - 10zx + 6yz 

 

Reduction to normal form by orthogonal transformation: 

In the transformation X = PY, P is an orthogonal matrix and if X = PY transforms the 

quadratic form Q to the canonical form then Q is said to be reduced to the canonical form 

by an orthogonal transformation. 

Suppose A has Eigen values 𝜆1, 𝜆2, … , 𝜆𝑛 (not necessarily distinct) and 𝑋1, 𝑋2, … , 𝑋𝑛are 

three eigen vectors which are linearly independent, we can construct normalized eigen 

vectors 𝑒1, 𝑒2, 𝑒3  corresponding to 𝜆1, 𝜆2, 𝜆3  which are pair wise orthogonal. Then we 

define P = (𝑒1, 𝑒2, 𝑒3), where 𝑒1 =  
𝑋1

‖𝑋1‖
 , 𝑒2 =  

𝑋2

‖𝑋2‖
 , 𝑒3 =  

𝑋3

‖𝑋3‖
    

 

 

 

 

 

 

 

 

 

 



The Mean Value Theorems are some of the most important theoretical tools in Calculus 

and they are classified into various types. In these free GATE Study Notes, we will learn 

about the important Mean Value Theorems like Rolle’s Theorem, Lagrange’s Mean 

Value Theorem, Cauchy’s Mean Value Theorem and Taylor’s Theorem. 

 

Rolle’s Theorem 

Statement: If a real valued function f(x) is 

 

1. Continuous on [a,b] 

2. Derivable on (a,b) and f(a) = f(b) 

 

Then there exists at least one value of x say c ϵ (a,b) such that f’(c) = 0. 

1. Geometrically, Rolle’s Theorem gives the tangent is parallel to x-axis. 

 

Rolle’s Theorem gives the tangent is parallel to x-axis. 

 

 
3. For a continuous curve maxima and minima exists alternatively 

                           

                                  
4. Geometrically y’’ gives concaveness i.e. 

i. y’’ < 0 ⇒ Concave downwards and indicates maxima. 

ii. y’’ > 0 ⇒ Concave upwards and indicates minima. 

To know the maxima and minima of the function of single variable Rolle’s Theorem 

is useful. 



5. y’’=0 at the point is called point of inflection where the tangent cross the curve is 

4. called point of inflection and 

6. Rolle’s Theorem is fundamental theorem for all Different Mean Value Theorems 

Q1) The function is given as f(x) = (x–1)2(x–2)3 and x ϵ [1,2]. By Rolle’s Theorem find the 

value of c ? 

Sol. Given f(x) = (x–1)2(x–2)3 f(x) is continuous on [1,2] i.e. f(x) 

= finite on [1,2] f'(x) = 2(x–1)(x–2)3 + 3(x–1)2(x–2)2 

f'(x)is finite in (1,2) hence differentiable then c ∈ 

(1,2) 

∴f'(c) = 0 

2(c–1)(c–2)3 + 3(c–1)2(c–2)2 = 0 

(c-1)(c-2)2[2c – 4 + 3c – 3] = 0 

(c–1)(c–2)2[5c–7] = 0 

 

Q2) Discuss the applicability of Rolle’s theorem to the function f(x) = 
1

𝑥2 in [-1, 1] 

Ans: Given function f(x) = 
1

𝑥2 in [-1, 1] 

 clearly f(x) is not defined at 0 in [-1,1] 

 so, f(x) is not continuous at x=0  

∴ f(x) is not continuous in [-1,1] 

∴ function f(x) fails first condition of Rolle’s theorem  

So Rolle’s theorem is not applicable for this function 

Q3) Find c of Rolle’s theorem for the function f(x)=𝑥2 𝑖𝑛 [−1,1] 

Ans:Given functions 𝑓(𝑥) = 𝑥2  𝑖𝑛 [−1,1],𝑓′(𝑥) = 2𝑥 

By Rolle’s theorem 𝑓′(𝑐) = 0 

⇒   2c=0 

𝑐 = 0 in [-1,1]. 

Q4) Is the Rolle’s theorem applicable to the function f(x) = x2 in [1, 2]? 

Ans:Given function 𝑓(𝑥) = 𝑥2 𝑖𝑛 [1,2] 

 Clearly function f(x) is polynomial of degree 2, lim
𝑥→𝑎

𝑥2 = 𝑎2 

∴ f(x) is continuous in [1,2].Clearly 𝑓′(𝑥) is exist in [1,2]  

But 𝑓(1) = 1, 𝑓(2) = 4,𝑓(1) ≠ 𝑓(2) 



 Function f(x) is not satisfy the third condition of Rolle’s theorem  

∴ Rolle’s theorem is not applicable for this function. 

Q5) State Rolle’s theorem 

Ans: If function f(x) is defined on [a,b] such that  

(i) f is continuous on [a,b] 

(ii)f is differentiable on (a,b) 

(iii) f(a)=f(b) 

Then there exist at least one point c∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0. 

Q6) Verify Rolles’s theorem for the function 𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑒𝑥  in the interval [0,π]. 

Solution: (i) 𝑠𝑖𝑛𝑥 and 𝑒𝑥 both are continuous functions in[0,π]  

therefore 𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑒𝑥  is also continuous on [0,π]. 

(ii) Also, since 𝑠𝑖𝑛𝑥 and 𝑒𝑥  are derivable in (0,π) then 
𝑠𝑖𝑛𝑥

𝑒𝑥  is also derivable in (0,π). 

(iii) 𝑓(0) =
𝑠𝑖𝑛0

𝑒0 =
0

1
= 1, 𝑓(𝑝) =  

𝑠𝑖𝑛𝑝

𝑒𝑝 = 
0

𝑒𝑝 = 0. 

Thus all 3 condition’s of Rolle’s theorem are satisfied. 

There exist 𝑐? (0, p) such that 𝑓 |(𝑐) = 0. 

We have 𝑓(𝑥) =
𝑠𝑖𝑛𝑥

𝑒𝑥  

               𝑓|(𝑥) = 
𝑒𝑥(𝑠𝑖𝑛𝑥)|−𝑠𝑖𝑛𝑥 (𝑒𝑥)|

(𝑒𝑥)2  

                           = 
𝑒𝑥 (cos 𝑥−sin 𝑥)

(𝑒𝑥)2  

                            = 
cos 𝑥−sin 𝑥

𝑒𝑥  

               𝑓|(𝑐)     = 
cos 𝑐−sin 𝑐

𝑒𝑐  

 We have 𝑓 |(𝑐) = 0 

         ⤇ cos 𝑐 − sin 𝑐 = 0 

         ⤇ cos 𝑐 = sin 𝑐 



         ⤇ 
sin 𝑐

cos 𝑐
= 1 

         ⤇ tan 𝑐 = 1 

          ⤇ tan 𝑐 = 𝑡𝑎𝑛
𝑝

4
 

          ⤇ 𝑐 =
𝑝

4
?(0,π). 

Hence Rolle’s theorem is verified. 

             Q) Discuss the applicability of Rolle’s theorem to the function  𝑓(𝑥) = 2 + (𝑥 − 1)
2

3 in the interval 

[0,2]. 

                Solution: (i) 𝑓(𝑥) is continuous on [0,2]. 

                (ii)  𝑓 |(𝑥) = 0 +
2

3
(𝑥 − 1)

2

3
−1

 

                                  = 
2

3

1

(𝑥−1)
1
3

 

            Thus 𝑓|(𝑥) does not exist in [0,2] at 𝑥 = 1. 

            Therefore 𝑓(𝑥) does not satisfy the condition of Rolle’s theorem on [0,2]. 

 Hence Rolle’s theorem is not applicable. 

Lagrange’s Mean Value Theorem 

Statement: If a Real valued function f(x) is 

1. Continuous on [a,b] 

2. Derivable on (a,b) 

 

Geometrically, slope of chord AB = slope of tangent 

 



 
Application: 

1. To know the approximation of algebraic equation, trigonometric equations etc. 

2. To know whether the function is increasing (or) decreasing in the given interval. 

 

Q7) Find the value of c is by using Lagrange’s Mean Value Theorem of the function 

 
Sol: f(x) is continuous in [0, 1/2] and it is differentiable in (0, 1/2) f'(x) 

= (x2 – x)[1] + (x – 2)(2x – 1) 

= x2 – x + 2x2 – x – 4x + 2 = 3x2 – 6x + 2 

From Lagrange’s Mean Value Theorem we have, f ′ ( c ) = 3 c2  − 6 c + 2 = 

f ( 1/2 ) − f ( 0 )/1/2=3/4  

  12 c2 – 24 c + 8 – 3 = 0 

12 c 2 – 24 c + 5 = 0 

 

 

 
Q8) Find c of Lagrange’s mean value theorem for f(x)=𝑙𝑜𝑔𝑒𝑥 𝑖𝑛(1,𝑒) 

Ans:Given functions 𝑓(𝑥) = log𝑒 𝑥 𝑖𝑛 (1, 𝑒),𝑓′(𝑥) =
1

𝑥
 

By Lagrange’s mean value theorem,𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

⇒
1

𝑐
=

𝑓(𝑒) − 𝑓(1)

𝑒 − 1
 

⇒
1

𝑐
=

1 − 0

𝑒 − 1
 

 𝑐 = 𝑒 − 1 in (1, 𝑒) 

Q9) Find the value of ‘c’ of Lagrange’s mean value theorem for the function f(x) = x2 in [1, 5]. 



Ans:Given functions 𝑓(𝑥) = 𝑥2 𝑖𝑛 [1,5],𝑓′(𝑥) = 2𝑥 

By Lagrange’s mean value theorem,𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

⇒ 2𝑐 =
𝑓(5) − 𝑓(1)

5 − 1
 

⇒ 2𝑐 =
25 − 1

4
 

 𝑐 = 3 in (1,5). 

Q10) State Lagrange’s mean value theorem. 

Ans: If function f(x) is defined on [a,b] such that  

(i) f  is continuous on [a,b] 

(ii)f is differentiable on (a,b) 

Then there exist at least one point c∈ (𝑎, 𝑏) such that 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

Q11) What is the Lagrange’s remainder for Taylor’s theorem   

Ans: 𝑓(𝑏) = 𝑓(𝑎) + (𝑏 − 𝑎)𝑓′(𝑎) +
𝑓′′(𝑎)

2!
(𝑏 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑏 − 𝑎)3 + ⋯ +

𝑓𝑛−1(𝑎)

(𝑛−1)!
(𝑏 −

𝑎)𝑛−1 + 𝑅𝑛where 

Lagrange’s remainder,𝑅𝑛 =
(𝑏−𝑎)𝑛𝑓𝑛(𝑐)

𝑛!
 

Q12) Apply Mean value Theorem to show that 
𝑏−𝑎

√1−𝑎2
< 𝑠𝑖𝑛−1𝑏 − 𝑠𝑖𝑛−1𝑎 <

𝑏−𝑎

√1−𝑏2
 where 0 <

𝑎 < 𝑏 < 1. 

Solution: Let 𝑓(𝑥) = 𝑠𝑖𝑛−1𝑥, 𝑠𝑖𝑛−1𝑥 is continuous and differentiable in [a,b].     

                𝑓 |(𝑥) = 
1

√1−𝑥2
 

By Lagrange’s mean value theorem, there exist 𝑐? (a, b) such that 𝑓 |(𝑐) = 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

1

√1 − 𝑐2
=

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

                                                                  

                                                                
1

√1−𝑐2
=

𝑠𝑖𝑛−1𝑏−𝑠𝑖𝑛−1𝑎

𝑏−𝑎
 − − − − −   (1) 



 

                               We have 𝑐? (a, b) 

                                           ⤇ 𝑎 < 𝑐 < 𝑏 

                                                 ⤇𝑎2 < 𝑐2 < 𝑏2 

                                                 ⤇ −𝑎2 > −𝑐2 > −𝑏2 

                                           ⤇ 1 − 𝑎2 > 1 − 𝑐2 > 1 − 𝑏2 

                                                 ⤇  √1 − 𝑎2 > √1 − 𝑐2 > √1 − 𝑏2 

                                           ⤇
1

√1−𝑎2
<

1

√1−𝑐2
<

1

√1−𝑏2
 

                                           ⤇ 
1

√1−𝑎2
<

𝑠𝑖𝑛−1𝑏−𝑠𝑖𝑛−1𝑎

𝑏−𝑎
<

1

√1−𝑏2
 

                                           ⤇ 
𝑏−𝑎

√1−𝑎2
< 𝑠𝑖𝑛−1𝑏 − 𝑠𝑖𝑛−1𝑎 <

𝑏−𝑎

√1−𝑏2
.  

          Q13) Verify Lagrange’s mean value Theorem for the function  𝑓(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2) in the 

interval [0,1/2]. 

          Solution : (i) 𝑓(𝑥) is continuous on [0,1/2]. 

                  (ii) 𝑓(𝑥) is derivable on (0,1/2). 

                        𝑓(𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2) =𝑥3 − 3𝑥2 + 2𝑥 

                         𝑓|(𝑥) = 3𝑥2 − 6𝑥 + 2 

                  By (i) and (ii) 𝑓(𝑥) satisfies Lagrange’s Mean value Theorem. 

           There exist 𝑐? (0, 
1

2
) such that 𝑓|(𝑐) = 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

                                   ⤇ 3𝑐2 − 6𝑐 + 2 =       

                                   ⤇ 3𝑐2 − 6𝑐 + 2 =       

                                   ⤇ 3𝑐2 − 6𝑐 + 2 =  
3

4
 

                                   ⤇ 12𝑐2 − 24𝑐 + 8 − 3 = 0 

                                   ⤇ 12𝑐2 − 24𝑐 + 5 = 0 



                                   ⤇  

                                               =  

                                                =  

                                               =  

                                                =  

                                                 =  

                                                 = 1.7637 or 0.2363 

                                                 = 0.2363      

   Therefore 𝑐? (0, 
1

2
). 

      Therefore Lagrange’s Mean Value Theorem is verified. 

Cauchy’s Mean Value Theorem 

Statement: If two functions f(x) and g(x) are 

1. Continuous on [a,b] 

2. Differentiable on (a,b) and g’(x) ≠ 0 then there exists at least one value of x such 

that c (a,b) 

 

Generally, Lagrange’s mean value theorem is the particular case of Cauchy’s mean 

value theorem. 

Q14)If f(x) = ex and g(x) = e-x, xϵ[a,b]. Then by the Cauchy’s Mean Value Theorem the 

value of c ? 

Sol. Here both f ( x ) = e x and g ( x ) = e - x are continuous on [a,b] and differentiable in (a,b) 

From Cauchy’s Mean Value theorem, 

f ′ ( c )/g ′ ( c ) =f ( b ) − f ( a )/g ( b ) − g ( a ) 

 
 

 
Therefore, c is the arithmetic mean of a and b. 

Q15) State Cauchy’s mean value theorem 



Ans: Statement: If functions f(x) and g(x) are defined on [a,b] such that  

(i)f, g are continuous on [a,b] 

(ii)f,g are differentiable on (a,b) and  

(iii) 𝑔′(𝑥) ≠ 0 ∀ 𝑥 ∈ (𝑎, 𝑏) 

Then there exist a point c∈ (𝑎, 𝑏) such that 
𝑓′(𝑐)

𝑔′(𝑐)
=

𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
. 

Q16) Find the value of ‘c’ of Cauchy’s mean value theorem for the function f(x) = ex and g(x) = 

e-x in [a, b].  

Ans: 

Given functions 𝑓(𝑥) = 𝑒𝑥 , 𝑔(𝑥) = 𝑒−𝑥  𝑖𝑛 [𝑎, 𝑏] 

𝑓′(𝑥) = 𝑒𝑥 , 𝑔′(𝑥) = −𝑒−𝑥 

By Cauchy’s mean value theorem  

𝑓′(𝑐)

𝑔′(𝑐)
=

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
 

⇒
𝑒𝑐

−𝑒−𝑐
=

𝑒𝑏 − 𝑒𝑎

𝑒−𝑏 − 𝑒−𝑎
 

⇒ −𝑒2𝑐 = 𝑒𝑏. 𝑒𝑎
𝑒𝑏 − 𝑒𝑎

𝑒𝑎 − 𝑒𝑏
 

⇒ 𝑒2𝑐 = 𝑒𝑎+𝑏 

𝑐 =
𝑎+𝑏

2
 in [a,b] 

Q17) Find c of  Cauchy’s mean value theorem for𝑓(𝑥)=𝑥2,𝑔(𝑥)= 𝑥3 𝑖𝑛[1,2] 

Ans:Given functions 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥3 𝑖𝑛 [1,2],𝑓′(𝑥) = 2𝑥, 𝑔′(𝑥) = 3𝑥2 

By Cauchy’s mean value theorem ,
𝑓′(𝑐)

𝑔′(𝑐)
=

𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 

⇒
2𝑐

3𝑐2
=

𝑓(2) − 𝑓(1)

𝑔(2) − 𝑔(1)
 

⇒
2𝑐

3𝑐2
=

4 − 1

8 − 1
 

⇒
2

3𝑐
=

3

7
 



𝑐 =
14

9
 

Taylor’s Theorem 

It is also called as higher order mean value theorem. 

Statement: If fn(x) is 

1. Continuous on [a, a + x] where x = b – a 

2. Derivable on (a, a + x) 

Then there exists at least one number θ (0,1) (1-θ ≠ 0) such that, 

 

 

 
Note: 

Substituting a = 0 and h = x in equation (1) (Taylor’s series equation) we get, 

f ( x ) = f ( 0 ) + x f ′ ( 0 ) +x 2/2 ! f ′′ ( 0 ) +x 3/3 ! f ′′′ ( 0 ) + ⋯x n-1/( n − 1 ) ! f n − 1 ( 0 ) + R n 

This is known as Maclaurin’s series. 

Here R n =xn/n ! f n ( θ x ) is called Lagrange ’ s form of remainder, 

 
Q18) Expand𝑒𝑥using Taylor’s series up to second degree terms about x=1 

Ans:Let f(x)= 𝑒𝑥 

 By Taylor’s series about x=1  

𝑓(𝑥) = 𝑓(1) + 𝑓′(1)(𝑥 − 1) +
𝑓′′(1)

2!
(𝑥 − 1)2 + ⋯               ------(1) 

Since f(x)=𝑒𝑥  ; f(1)= e,𝑓′(𝑥) = 𝑒𝑥    ; 𝑓′(1) = 𝑒;𝑓′′(𝑥) = 𝑒𝑥   ; 𝑓′′(1) = 𝑒 

 Put these values in (1) we get ,𝑒𝑥 = 𝑒 + 𝑒(𝑥 − 1) +
𝑒

2!
(𝑥 − 1)2 + ⋯ 

Q19) Obtain the Taylor’s series expansion of the function f(x) = sinx up to third degree term 

about the point x =
𝜋

4
 

Ans:Let f(x)=  𝑠𝑖𝑛𝑥  

 By Taylor’s series about x=
𝜋

4
 

𝑓(𝑥) = 𝑓 (
𝜋

4
) + 𝑓′ (

𝜋

4
) (𝑥 −

𝜋

4
) +

𝑓′′(
𝜋

4
)

2!
(𝑥 −

𝜋

4
)

2

+
𝑓′′′(

𝜋

4
)

3!
(𝑥 −

𝜋

4
)

3

+ ⋯    ------(1) 

Since f(x)=sinx  ; f(
𝜋

4
)=

1

√2
;𝑓′(𝑥) = 𝑐𝑜𝑠𝑥   ; 𝑓′ (

𝜋

4
) =

1

√2
;𝑓′′(𝑥) = −𝑠𝑖𝑛𝑥 ; 𝑓′′ (

𝜋

4
) = −

1

√2
 



𝑓′′′(𝑥) = −𝑐𝑜𝑠𝑥 ; 𝑓′′′ (
𝜋

4
) = −

1

√2
 

 Put these values in (1) we get ,𝑠𝑖𝑛𝑥 =
1

√2
+

1

√2
(𝑥 −

𝜋

4
) −

1

2√2
(𝑥 −

𝜋

4
)

2

−
1

6√2
(𝑥 −

𝜋

4
)

3

+ ⋯ 

Q20) Obtain the Maclaurin’s series expansion term of the function f(x) = ex up to third degree 

Ans:Let f(x)= 𝑒𝑥 

 By Maclaurin series,𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 +

𝑓′′′(0)

3!
𝑥3 + ⋯               ------(1) 

Since f(x)=𝑒𝑥  ; f(0)=1;𝑓′(𝑥) = 𝑒𝑥    ; 𝑓′(0) = 1;𝑓′′(𝑥) = 𝑒𝑥   ; 𝑓′′(0) = 1;𝑓′′′(𝑥) =

𝑒𝑥   ; 𝑓′′(0) = 1 

 Put these values in (1) we get ,𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ 

Q21) Expand sinx using Maclaurin’s series upto second degree terms 

Ans:Let f(x)= sinx 

 By Maclaurin series ,𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 + ⋯               ------(1) 

Since f(x)=sinx  ; f(0)=0 

𝑓′(𝑥) = 𝑐𝑜𝑠𝑥   ; 𝑓′(0) = 1 

𝑓′′(𝑥) = −𝑠𝑖𝑛𝑥  ; 𝑓′′(0) = 0 

𝑓′′′(𝑥)
= −𝑐𝑜𝑠𝑥  ; 𝑓′′(0) = −1 

 Put these values in (1) we get, 𝑠𝑖𝑛𝑥 = 𝑥 −
𝑥3

3!
+ ⋯ 

Q22) Expand cosx using Maclaurin’s series upto second degree terms 

Ans:Let f(x)= cosx 

 By Maclaurin’s series  

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 + ⋯               ------(1) 

Since f(x)=cosx  ; f(0)=1 

𝑓′(𝑥) = −𝑠𝑖𝑛𝑥   ; 𝑓′(0) = 0 

𝑓′′(𝑥) = −𝑐𝑜𝑠𝑥  ; 𝑓′′(0) = −1 



 Put these values in (1) we get , 𝑐𝑜𝑠𝑥 = 1 −
𝑥2

2!
+ ⋯ 

UNIT- IV 

PARTIAL DIFFERENTIATION 

Total derivative: If  where  and , then we can express  

as a function of  alone by substituting the values of  and  in . Thus we 

can find the ordinary derivative  which is called the total derivative of  to 

distinguish it from partial derivatives .   

To find  without substituting the values of  and , we establish the chain 

rule.   

  

Note: If  where  are all functions of , then chain rule is   

  

Differentiation of implicit functions: If  be an implicit relation 

between  which  

defines as a differentiable function of , then 

  

Problem: If the curves  and  touch then show that 

.  

Sol:   and    

Consider   

Problem: If where  and , find   

Sol: Given   

  

                                   

                                   



Problem: If  where , find   

Sol: Given .  

Suppose   

  

  

                              

                              

Problem: If , then prove that .  

Sol: Given   

Suppose , then   

   

   

   

Therefore .  

Problem: If ,  and , then prove that  

.  

Sol: Given   and  ,   

  

Consider   



                               

                               

Problem: If by the substitution , show 

that  

  

Sol:   

  

                          

                          

                          

                          

  

                           

                           

                           

                           

   

                        

                        

Problem: Transform  by the 

substitution .  

Hence show that  is the same function of  and  as of  and .  

Sol: Given that   



   

   

                

  

                                             

                                             

                                            

Substituting these values in , we get   

 

Problem: If , then prove that   

Sol:   

Suppose , then   

   

   

   

Therefore .  



Definition: If  and  are functions of two independent variables  and , then 

the determinant  is called the Jacobian of   with respect to   and is 

denoted by .  

Similarly the Jacobian of  with respect to   

  

Problem: If , then find   

Sol:   and    

  

Problem: If , show that   

Sol :    

            and    

  

                                            

                                            

                                            

Problem: If ,  then find  

Sol:

  

𝑢 = tan − 1 𝑥 + tan − 1 𝑦 ,       𝑣 = 
𝑥 + 𝑦 

1 − 𝑥𝑦 



 

Problem: If 

, then find   

Sol:  

  

  

  

 Properties of Jacobians:  , then    

2. Chain rule for Jacobians: If  are functions of  ans  are functions 

of , then   

  

3. Jacobian of Implicit functions: If  instead of being given explicitly 

in terms of  be connected with them equations such as  

 , 

, then  

  

Problem: If ,  evaluate   and   . Also 

show that  .  

Sol:   and   then 

  

  

  



  and  

  

  

Therefore  

  

Taylor’s theorem for functions of two variables:  

The Taylor’s series expansion for a function  in powers of  and 

 is  

   

                               

Note: The Taylor’s series expansion for a function  in powers of  and 

 is  

   

                                                                       

Problem: Expand  in powers of  and  up to second degree term.  

Sol: Suppose   

                                

                            

                            

                      

                       

Taylor’s series expansion for a function  in the neighbourhood of    



  

                               

   

Problem: Expand  in powers of  and  up to second degree 

terms.  

Sol:                                                     

                                      

  

                                                   

                                                                   

                            

  

                                                                

The Taylor’s series expansion for a function  in powers  and 

 is  

  

                                

   

                                

  

Maxima and mimina of functions of two variables: A function  is said 

to have maximum or minimum at  according as  

or  for all positive or negative small vales of  and .  

Note:  is said to be a stationary value of  if  and 

.   



i.e. the function is stationary at the point .  

Working rule  to find the maximum and minimum values: Suppose  be 

the given function.  

1. find  and equate to each zero. Solve these as simultaneous 

equations in  and .  

Let  be the stationary points.  

2. find the values of   at each stationary point.  

3. (i) If  and  at , then  has maximum value at .  

(ii) If  and  at , then  has minimum value at .  

(iii) If  at , then  is not an extreme value. i.e.  is 

saddle point.  

(iv) If  at , it needs further investigation. 

  

Problem: Find the maximum and minimum values of the function 

  

 Sol:     

  and   

Suppose    and   i.e   

the stationary point.   

Now ,   and    

,    and    

Consider  and    

Therefore has minimum value at and   

Problem: Discuss the maximum and minimum values of  if  

  

Sol:    

Suppose 



   

                                                                                        

The 

stationary points are   

   

And   

  has a maximum value at    

Problem: Discuss the maxima and minima of   

Sol:    

Suppose 

   

                                                                                  

   

The stationary points are .  

  

  

 And   

  has a maximum value at    

Lagrange’s method of undetermined multipliers:  



 Sometimes it is requires to find the stationary vales of a function of several 

variables which are not all independent but connected by some given relations.  

Generally, we convert the given function to the one, having least number of 

independent variables with the help of given relations. Then solve it by the 

above method. When such a procedure becomes impracticable, Lagrange’s 

method proves very convenient.  

Let  … (1)   be a function of three variables  which are 

connected by the relation  

   ….     (2)  

For  to have stationary vales, it is necessary that   

Differentiating (1), we get    …. (3)  

Also differentiating (2), we get    …. (4)  

Multiply (4) by parameter  and adding to (3), we get   

   

This equation will be satisfied if   

These three equations together with (2) will determine the values of  and 

 for which  is stationary.  

Working rule:  1. Write   

2. Obtain the equations    

3. These three equations together with      

The values of  so obtained will give the stationary value of .  

Problem: In the plane triangle ABC, find the maximum value of 

  

Sol:  and    

Define ,   

   

   



   

Suppose  . i.e.   

                  

   

   

 is the stationary point of

  

Problem: A rectangular open box of capacity 32 cubic units is to be prepared. 

Find the dimensions of the box, to minimize the cost of painting outside.   

Sol: Let  units be the sides of the box and  be its surface.  

Then   and   

Define   

Then   

   

Now 

 and 

   

Therefore   

Since   



Hence has minimum value when .  

  

                                                                 UNIT V 

                                                MULTIPLE INTEGRALS 

Problem: Evaluate   

Sol:   

                                   

                                  

Problem: Evaluate .  

Sol:   

                                          

                                          

Problem: Evaluate   

Sol: The region of the integration is bounded by   

 

  

Problem: Evaluate   

Sol:   

                                   

                                   

                                   



Problem: Evaluate    over the triangle bounded by

.  

Sol: Given region of integration is triangle formed by lines 

.      

The line   intersects -axis at  and -axis at .  

  

                                                

                                               

 

                                               

                                               

Problem: Evaluate the  over the region R where R is the region 

bounded by parabolas    and .  

 Sol: Given  is the region bounded by parabolas  and    

The point of intersection of given two parabolas is .  

  

                                          

                                          

                                                

Problem: Evaluate  .  

Sol:   

                                                           



                                                           

                                                           

                                                           

Problem: Evaluate   

Sol:   

                                                                

                                                               

                                                               

                                                               

Problem: Evaluate .  

Sol:    

                                                                     

                                                                    

                                                                  

  

                                                                    

                                                                  

  

                                                                  

  

                                                                     



Problem: Evaluate   

Sol:   

                                                                  

                                                                

                                                               

Problem: Evaluate  by changing the order of integration.   

Sol: The region of the integration is bounded by 

  

On changing the order of integration,   and   

  

                                    

                                    

Problem: Evaluate    by changing to polar coordinates.  

Sol:   

Area of the given integration is bounded by   

Put  , then   

  

                                            

                                            

Problem: Evaluate   



Sol:         

 On changing the order of integration  and .  

  

                                     

                                     

Problem: Evaluate the double integral 

  by changing the order of integration.  

Sol: The region of the integration is bounded by 

.  

On changing the order of integration,   and   

  

                                                                                          

  

                                                                                            

                                                                                            

 

                                                              

 

 


	How do I find eigenvalues of a square matrix?
	Total derivative: If  where  and , then we can express  as a function of  alone by substituting the values of  and  in . Thus we can find the ordinary derivative  which is called the total derivative of  to distinguish it from partial derivatives .

