Unit—1
Linear system of equations

Rank of the matrix:
Let A be m x n matrix, matrix A is said to be of rank r when
(1) It has at least one non-zero minor of order r,
(if) Every minor of order higher than r vanishes.
(or)
The rank of a matrix is the largest order of any non-vanishing minor of the matrix.
The rank of a matrix A shall be denoted by p(A).
Note: 1. If a matrix has a non-zero minor of order r, its rank is > r.
2. If all minors of a matrix of order r + 1 are zero, itsrank is <r.

1 2 3
Ex1: find the rank of the matrix |3 4 5
4 5 6
1 2 3
Sol: LetA= |3 4 5
4 5 6
1 2 3
detA=13 4 5 =0
4 5 6
rank of A # 3.

1 2
Consider a minor of order 2 = ‘3 4‘ =240

Rank of the matrix A = 2.

1 2 3 4
Ex2: find the rank of the matrix |5 6 7 8
8 7 05
1 2 3 4
Sol: LetA= |5 6 7 8
8 7 05
1 2 3 4
detA=5 6 7 8=24+#0
8 7 0 5

Rank of the matrix A = 3.
Echelon form of a matrix:
A matrix is said to be in echelon form if it has the following properties



(1) Zero rows, if any, are below any non-zero row.

(2) The first non-zero entry in each non-zero row is equal to 1.

(3) The number of zeros before the first non-zero element in a row is less than the
number of such zeros in the next row.

Conditional (2) is optional.

1230
Reduce the matrix A={2 4 3 2| into echelon form and hence find its rank
Ex1:
3213
L 8 7 5
Sol: 1230
Consider A= |2 4 3 2
3213
6 8 75
1 2 3 0
R, > R, — 2R,R; > R3— 3R, Ry > Ry — 6R 0 0 -3 2
0 -4 -8 3
0 -4 -11 5
1 2 3 0
Ry R3 |0 -4 -8 -3
0 0 -3 2
0 -4 -11 5
2 3 0]
Ry, Ry— R, |0 -4 -8 -3
0 0 -3 2
0 0 -3 2]
2 3 0]
Ry Ry— R3 |0 _4 -8 -3
0 0 -3 2
0 0o 0 0]
This is in Echelon form and the number of non-zero rows is 3.
Rank of A= p(A) =3
Reduce the matrix A = 2 (1) 1 11 into echelon form and hence find its rank
Ex2: 31 0 2
11 -2 0
. . 01 -3 -1
Sol: Consider A = 10 1 1
31 0 2
11 -2 0
10 1 1
Rie Rylg 1 3 4
31 0 2
11 -2 0
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This is in Echelon form and the number of non-zero rows is 2.
Rank of A= p(A) =2

The following problems are discussed in the class work:

Reduce the matrix A = 7*11 *13 fl *01 into echelon form and hence find its rank
1 2 -5 2 -3
-1 1 0 1
Reduce the matrix A = j ; i 2 into echelon form and hence find its rank
2 8 4 7 13
_8 4 -3 -1
A . 3 4 5 7 .
Find the rank of the matrix A= | . , ¢ g |.byreducing to Echelon form
3 5 6 7 9
15 16 17 19
Normal form:

I, O
Every m x n matrix of rank r can be reduced to the form I,., [Ir O]or {O“ 0} by a finite

chain of elementary row or column operations, where I,. is the r-rowed unit matrix.

The above form is called “normal form” or “canonical form “of a matrix.

1212
_ | Find the rank of the matrix|1 3 2 2|, by reducing it to be the normal form.
Ex1:
2 4 3 4
37568
Sol: 1212
LetA=1|1 3 2 2
2 4 3 4
3756
1212
R,» R,— R;,R; > Ry — 2R;,R, » R, — 3R, |0 1 1 0
0010
0120




1212
R,» R,—R,|0 110
0010
0010
121 2
R,» R,— Ry |0 1 10
0010
0000
1000
Cy— Cy— 2C;,C3— Ca— €y, Co> Co— 2C, |0 1 1 0
0010
0000
1000
Cs—> C3— C, [0 100
0010
0000

I
Rank of the matrix is 3 and This is of the form { Or 8}

Reduce the following matrix to Normal form and hence find it’s rank

2 -2 0 6
Ex2: 4 2 0 2
1 -1 0 3
1 -2 1 2
Sol: 2 -2 06
Sol: let A = 4 2 0 2
1 -10 3
1 -2 1 2
1 -10 3
Rie R3l4 2 02
2 -2 0 6
1 -2 1 2
1 -1 0 3
R, » R, — 4Ry,R3 = Ry — 2R, Ry » Ry, — Ry 0 6 0 -10
0 0 0 O
0 -1 1 -1
1 -1 0 3
C; > C+C |0 60 -10
0 0 0 O
0 0 1 -1
1 0 0 O
C, > G+ Gy, G~ Gy — 36 0 6 0 -10
0 0 0 O
0 -11 -1




100 0
Ry, R3 |0 6 0 -10
0 -11 -1
000 O
10
C3- C3+ Gy, Co> Cu— Colp 6
0 -1
00
00 0
R; > 6R3+Rzl0 6 6 -16
00 0 O
000 O
10
CZ_)%'C3 _)%' C4- _C_f60 1
00
00
10
C3—> C3— Gy, C4p = Co— Cylp 1
00
00
. {Iz
This is of the form 0

o O +» O

o O oo O
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8} and the rank of the matrix = 2

The following problems are discussed in the class work:

i 012 -2]. .
1 Reduce the matrix A= 40 2 g|into Normal Form and hence find its Rank.
213 1
Reduce the matrix A = i _31 :; :4 into normal form and hence find its rank
2 31 3 -2
6 3 0 -7
1230
3 Find the rank of the matrix A= |2 4 3 2|by reducing to normal form
3213
6 8 75

Elementary matrix:

It is a matrix obtained from a unit matrix by a single elementary transformation.

010

Ex: |1 0 O0|isaelementary matrix obtained from unit matrix by applying elementary

0 01
transformation R, & R,.




Normal form with PAQ:

Every elementary row (column) transformation of a matrix can be obtained by pre-
multiplication (post-multiplication) with corresponding elementary matrix.

I, O
Obtain non-singular matrices P and Q such that PAQ is of the form {Or 0}

Ex1: 1 1 2
where A=|,; 5 3 |and hence obtain its rank.
0 -1 1]
1 1 2
Given,A=|1 2 3
0 -1 -1
This can be writtenas A=1; A 15
1 1 2 1 00 1 00
1 2 3|=|0 1 0|]A|0 1 O
0 -1 -1 0 01 0 01
11 2 1 0 1 0
R, > R,—R,|0O 1 1|=|-11O0/A(0 10
0 -1 -1 0 01 0 1
11 2 1 00 1 0
R; > R;+R,|0 1 1|=]|-11 A0 10
Sol 000 [-111] [001
1 00 1 00 1 -1 -2
c, » C,—C,C3 »C3—2C;|0 1 1|=(-1 1 0]A|0 1 O
0 0O -1 11 0 0 1
1 00 1 00 1 -1 -1
c; > C;—C, |0 1 0|=|-1 1 0/A|0 1 -1
0 0O -111 0 0 1
1 0O 1 -1 -1
This is of the form {'02 g} =PAQ,whereP=|-1 1 OjlandQ=|0 1 -1
-1 11 0 0 1
Hence rank of the matrix = 2
Ex2: | Find the non-singular matrices P and Q such that PAQ is in normal form A=




S =
154 3| /001 |©0210
0 001
1 3 6 -1 1 00
R, > R,—Ri,R3 > R3— Ry g1 -1 2|5|-11 0|A
0 2 -2 14 -1 0 1
1000
0100
0010
0 001
136 -1 [1 0o o] |1 00O
Ry > R3—2R;|g 1 -1 2|=|-1 1 0|/A|0 100
0010
: 00 0 O 1 -2 1
Sol. 0 001
C, » C,— 3C;,C3 > C3— 6C,C, > Co+Cy
100 0 [1 0o o] [t -8 -61
01 -127[-1 1 o/A|0 1 00
00 o0 o0 |1 -2 |90 10O
0 0 0 1
1000 1 0 O 1 -3 -9 7
(3 » C3+C,C - C—2C|0 1 00/7|-1 1 0o|Aj0 1 1 -2
0000 |1 -21 o0 1 0
- 0 0 0 1
L0 1 0 0
Thisisoftheform{o2 O}:PAQ,WhereP: 1 1 oland
1 -2 1
1 -3 -9 7
Q=lo 1 1 -2
0 0 1 ©
0 0 0 1
Hence rank of the matrix = 2
3 Find the non-singular matrices P and Q such that PAQ is in normal form




1 2 3-2
A=|2 -2 1 3
3 041
wewrite A=1; Al,
1 000
1 2 3-21 (100
0100
2-21 3|=|010A
3 0 4 1 00 1 0010
0 001
Sol: | By applying elementary transformations,
1 -20 20 O
1 000 1 0 -1 0 25 L o
Weget (0O 1 0 0|= 0 -1/120 1/60| A . )
0 001 -1/24 0 1/12
0O 0 1

Rank of the matrix = 3

The following problems are discussed in the class work:

Find the non-singular matrices P and Q such that PAQ is in normal form A=
1 -2 3 4

-2 4 -1 -3
-1 2 7 6
Obtain non-singular matrices P and Q such that PAQ is of the form {'r 0}
0 0
1 -1 -1 .
2 where A = L1 1]and hence obtain its rank
31 1

The inverse of a matrix by elementary transformations: (Gauss — Jordan method)
Suppose A is a hon — singular square matrix of order n.
We write A= 1, A

We apply elementary row operations only to the matrix A and the prefactor I, of the
R.H.S. we get the equation of the form I, =B A

Here B is the inverse of A.

Ex1:

1 -2 -3
Given |0 2 0 |, find the inverse
0O 0 3




1 -2 -3
LetA=|0 2 O

0O 0 3
We write A= 13 A

1 -2 -3
0 2 0=
0 0 3

o o

o~ o

~ o o
>

10 -3 110
R, > Ry+ R, |0 2 0{010A
00 3] (001
Sol: 1 0 0] [1 1 1
R1—>R3+R1020}{010]A
003/ [00°1
100] [1 1 1
R2—>%,R3—>%010]:O% 0|A
0 01 oo%
A

This is of the form I3 =B

o

1 1
The inverse of the matrix A = % 0
0 X

The following problems are discussed in the class work:

. Find the inverse of matrix A= _11 _f _31 _01 using elementary transformation.
2 -5 2 -3
-1 1 0 1
-2 1 3
2 Find the inverse of A= | 0 -1 1 |using elementary transformation.
1 2 0

System of Linear simultaneous equations:

Def: An equations of the form a,x;+ a,x, + asxs+.... + a,x, = b where x;, x5, ... x,,
are unknowns and a4, a,, ..., a,, b are constants is called a linear equations in n
unknowns.

Def: consider the system of m linear equations in n unknowns x, x,, ... x,are



a X FapX, +agX;+..+a,X, = b
AyX, 8K, FaApX;t..t+ayX, = b,
AyX, 85X, FagX;t..+ayX, = b,

Ay X, +a,X, +a,X; +...+a,,X, =b,
Where aa;;’s and by, by,... by are constants. The above system is called the system of

simultaneous equations.
The above system can be in written in the form of matrix A X = B, where A= |a, |, X =

(X, %y, X, )  and B = (by,b,,....b, )’

If B = 0, the system is called a homogenous system of linear equations.
The system AX = O is always consistent since X = 0 is always a solution of AX = O.

This solution is called the trivial solution of the system.

If B =0, the system is called a non-homogeneous system of linear equations.
For [N =0, A™ exist.

The system A X = B is consistent if it has a solution otherwise is said to be inconsistent.
Non — homogenous system:

The system AX = B is consistent i.e, it has a solution if and only if p(A)= p(A/B)
Q) If p(A) = p(A/B)=r =nthen the system has unique solution.
(i) If p(A) = p(AlB)=r <nthen the system is consistent, but there exists infinite

number of solutions. Giving arbitrary values to n — r of the unknowns.

(iii)  If p(A) = p(AlB) then the system is inconsistent i.e, the system has no solution.

Ex1: | Solve the system of equations x +y+z=9,2x+5y+72=52,2x+y—-z2=0

Sol: | The given system of equations can be written in matrix form AX =B
1 1 1/|[x 9

2 5 7||y|=]|52
2 1 -1)|z 0
11 1 9
The augmented matrix is[A/B]=|2 5 7 52
2 1 -1 0




11 1 9
R2 - Rz - 2R1,R3 - R3_ 2R1 0 3 5 34

0 -1 -3 -18
11 1 9
Ry > 3Rs+ R,|0 3 5 34
00 -4 -20

Here p(A)=3,p(A/B)=3
We have p(A)=p(A/B)=3=n
The system is consistent and it has a unique solution.
The equationsare x +y+z=9

3y+5z2=34

4z=-20=>z=5

We have 3y +25=34=>y=3
Andx+3+5=9=>x=1

X 1
Solution X =|y| =13
z 5
Ex 2: | Show that the system of equationsx +y+z=4,2x+5y—-22=3,x+7y-7z=5
are not consistent.
Sol: | The given system of equations can be written in matrix form AX =B
1 1 1 ||x 4
2 5 =2(|y|=]3
1 7 -7||z 5
11 1 4
The augmented matrix is [A/B]=|2 5 -2 3
17 -7 5
11 1 4
R, > R,— 2R,R; » R;— R, |0 3 -4 -5
0 6 -8 1
11 1 4
Ry » R;— 2R, |0 3 -4 -5
00 0 11
Here p(A)=2,p(A/B)=3
We have p(4) = p(A/B)
The given system is not consistent.
Ex 3: | Find for what values of A the equations x +y+z=1,x+2y+4z=A, x +4y+ 10

z = A% have a solution and solve then completely in each case.




Sol:

The given system of equations can be written in matrix form AX =B
1 1 1]|x 1

12 4|lyl=|4
1 4 10|z A2

11 1 1
The augmented matrix is[A/B] =11 2 4 A4
1 4 10 2
111 1
R, » R,— R,R; > R;— R |0 1 3 21-1
0 39 2-1
111 1
R; > R;— 3R, |0 1 3 A-1
0 00 2#-31+2

The given equations will be consistent iff A2-3A+2=0=>L=1,2

Case (i): if A = 1then
1111
[A/B]=|{0 1 3 0
0 00O
Here p(A)=2,p(A/B)=2

The system is consistent and the number of arbitrary constants are n-r = 3-2 =1
the equationsare x+y+z=1,y+3z2=0

Letz=ktheny=-3kand x=2k +1

X 2k +1 2 1
X=|y|=| -3k |[=k|-3|+|0
Z k 1 0

Case (ii): if A = 2then
1111
[A/B]=|0 1 3 1
0 00O
Here p(A)=2,p(A/B)=2

The system is consistent and the number of arbitrary constants are n-r = 3-2 =1




the equationsare x+y+z=1,y+3z=1

Let z=Kktheny=1-3k and x = 2k

X 2k 2 0
X=|y|=]1-3k|=k |-3|+|1
z k 1 0
Ex 4: | Find the values of a and b for which the equations x + y + z = 3, X + 2y + 2z =6, X
+ay +3z = b have (i) No solution (ii) a unique solution (iii) infinite number of
solutions.
Sol: | The given system of equations can be written in matrix form AX =B

1 1 1)|x 3
1 2 2(|y(=1]6
1 a 3||z b

1113
The augmented matrix is[A/B]=|1 2 2 6
1 a 30D
1 1 1 1
R, > R,— R,R; > R;— R, |0 1 1 3
0 a-1 2 b-3
1 1 1 1
Ry » R;—2R, |0 1 1 3]
0 a-3 0 b-9

No solution: p(A) # p(A/B)

Then p(A) = 2, p(A/B) =3

Soa=3andb #9

Unique solution: p(A) = p(A/B) = n(unknowns)

Then p(A) =3, p(A/B) =3

Soa#3andb is any value

Infinite number of solutions: p(A) = p(A/B) < n(unknowns)
Then p(A) =2, p(A/B)=2andn=3

Soa=3andb=9




The following problems are discussed in the class work:

Find whether the following system of equations are consistent. If so solve them

1 X+2y+22=2,3x—2y-272=5,2x-5y+32=-4,x+ 4y + 62 =0
Find the values of a and b for which the equations x + y + z = 3, X + 2y + 2z =6,
2 X + 9y +az = b have (i) No solution (ii) a unique solution (iii) infinite number of
solutions.
3 Solve the system of equations X +y+z=6,Xx—y+2z2=53x+y+z=8

Homogenous system:

The system AX = O is consistent

(i)
(if)

If p(A) =r = nthen the system of equations have only trivial solution
If p(A) =r < nthen the system of equations have an infinite number of solutions.

Giving arbitrary values to n — r of the unknowns.

Ex1:

Solve the system of equations x +y+w=0,y+z=0,x+y+z+w =0,
X+y+2z=0

Sol:

The given system of equations can be written in matrix form AX =0
110 X 0

[HEN

1
1
2

o - O

y| |0
Z 0
w 0

The coefficient matrix is A =

e =
e
N P P O

R; > R;— R;,R, » Ry — Ry

o O O B+
O O -

R4_ - R4_2R3

o O O -
oSO O - -
o . O




Rank of A =4 and number of variables = 4
Therefore, the system of zero solution
The solutionsarex=y=z=w =0.

Solve completely the system of equations x + 3y —2z=0,2x—-y+4z=0,x—

BX2 | 1y + 142 =0
The given system of equations can be written in matrix form AX =0
1 3 -2||x 0
2 -1 4 |ly|=|0
1 -11 14|z 0
1 3 =2
The coefficient matrixisA= |2 -1 4
1 -11 14
1 3 =2
R2 g RZ_ 2R1,R3 d R3_ R1 0 _7 8
0 -14 16
1 3 =2
Ry » 2|0 -7 8
Sol: 0 -7 8
1 3 =2
Ry > R3— R, |0 -7 8
0 0 O
This is an Echelon form.
Rank of A =2 and number of variables = 3
Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1
The equationsare x +3y—-2z2=0,-7y+8z=0
Letz:k,theny:%, x:%Ok
X (-10k)/7 (-10)/7
The solution X = |y |=| 8k/7 |= k| 8/7
z k 1
Ex3: Solve the systemAx +y+z=0,x+ Ay +z=0,x +y+ Az =0 if the system has
" | non —zero solution only.
The given system of equations can be written in matrix form AX =0
A1 1|[x
Sol:

0
1 4 1)ly|=]0
1 1 Af|z 0




The coefficient matrix is A =

T RN
S
Al

if the system has non —zero solution then det A = 0 then we have
A1 1

1 2 1=0
1 1 2
A=1,1and-2

Case(i) : putA=1

11 1]|x 0
11 1lyl=]0
Thenlllz 0
111
R, - R,— R;,R; > R;— R, |0 0 O
0 0O

Rank of A =1 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—-r=3-1=2

The equationsarex+ y+z=0

Lety=c,z=Kk, thenx=—c—k

X -c-k -1 -1
ThesolutionX=|y|=| ¢ |=c |1 |+k]|O
z k 0 1

Case (ii): put A = -2 then we have
-2 1 11[x] [0]

1 -2 1 1|y|=10
1 1 -2||z| |O

1 -2 1]
R, R, |-2 1 1
1 1 -2

1 -2 1
RZ - R2 + 2R1,R3 - R3_ Rl O _3 3
0 3 -3




1 -2 1
Ry > Rs+ Ry |0 -3 3
0 0 0

This is an Echelon form.
Rank of A =2 and number of variables = 3
Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1
The equationsare x—2y+z=0,-3y +3z=0=>y=z
Letz=k,theny=k, x=k

X k 1
The solution X = |y |=|k|= k|1

k

VA

The following problems are discussed in the class work:

Solve completely the system of equations x + 2y — 2z + 3w =0, X -2y +z—w =
0,4x+y—-52+8w=0,5x-7y+2z—w=0

Determine the values of A for which the following set of equations may possess
non — trivial solution: 3x+y—Az=0,4x -2y —-3z=0,2Ax + 4y +Az=0

Solutions of linear systems — Direct methods:

1. Gauss Elimination method:

Ex1:

Solve the system of equations 3x + y+2z=3,2x-3y-z=-3, X+ 2y+z=4

Sol:

The given system of equations can be written in matrix form AX =B
3 1 2]|x 3

2 -3 -1||y|=|-3
1 2 1|z| | 4

31 2 3
The augmented matrix is[A/B] =2 -3 -1 -3
1 2 1 4

1 2 1 4
R, & Ry |2 -3 -1 -3
3 1 2 3




X

Solution X = |y | =

1 2 1 4
R, - R,— 2R;,R; - R;— 3R, |0 -7 -3 -11
0 -5 -1 -9
1 2 1 4
R; - 7R; — 5R, |0 -7 -3 -11
0O 0 8 -8
The equationsarex+y+z =4
-7y-3z2=-11
-8z2=-8=>z=-1

We have -7y +3 =-11=>y =2
Andx+2-1=4=>x=1

1
2

-1

2. Gauss — Jordan method:

Exl: fglvethesystemofequation32x+y+z:10, 3X+2y+3z=18,x+4y+9z =
The given system of equations can be written in matrix form AX =B
2 1 1|[x 10
3 2 3||y|=]18
1 4 9|z 16
2 1 1 10
The augmented matrix is[A/B]={3 2 3 18
1 4 9 16
1 4 9 16
Sol 1r o R, (3 2 3 18
2 1 1 10
1 2 1 4
R, > R,— 3R,R; » R;— 2R, |0 —-10 —-24 -30
0 -7 -17 -22
1 0 -19 -10
R, = 5R; + R,,R; = 10R; — 7R, |0 -10 —-24 -30
0o 0 -2 -10




1 0 0 7

Rl - 2R1_ 19R3,R2 - RZ_ 12R3 0 _10 O 90
0 0 -2 -10
100 7
Ry, > “5,R; > =0 1 0 -9
001 5

Which givesx=7,y=-9,z=5

Def: Consider the system of equations

A X; TapX, +aX; = b1
Ay Xy TApX, +ayuX; = bz
Ay X T ApX, tapX; = b3

Where the diagonal coefficients are not zero and are large compared to other
coefficients, such system is called a diagonally dominant system.

Simple iteration methods can be devised for systems in which the coefficients of the
leading diagonal are large compared to others. We now explain three such methods

3. Gauss Jacobi iteration method:

Ex1:

Use gauss - jacobi iteration method to solve the equations 10x +y -z =11.19, x +
I0y + 2 =28.08, - x +y + 10z = 35.61, correct to two decimal places.

Sol:

The given system is diagonally dominant, so we can write
x== (1119 -y +2)

y= — (2808 —x —2)

z== (3561 +x—y)

take the intial values x =0, y = 0, z = 0 then we get

Variable | Ist approx. | lInd approx. IHird IVth vin
approx. approx. approx.

X 1.119 1.19 1.22 1.23 1.23

y 2.808 2.24 2.35 2.34 2.34

z 3.561 3.39 3.45 3.45 3.45

The solution of the given system of equations is x = 1.23,y = 2.34, z = 3.45.

4. Gauss Seidel Iteration method:

Exl: Use gauss - seidel iteration method to solve the equations 27x + 6y - z = 85, 6x +
"1 15y +2z2=72, x+y+ 54z =110
Sol: | The given system is diagonally dominant, so we can write




X=— (85— 6y +2)
y= — (72— 6x — 22)
zzsi4 (110 —x —y)
take the intial values y = 0, z = 0 then we get

Variable | Ist approx. | lInd approx. Ilird IVth vin
approx. approx. approx.
X 3.15 2.43 2.426 2.425 2.425
y 3.54 3.57 3.572 3.573 3.573
z 1.91 1.926 1.926 1.926 1.926

The solution of the given system of equations is x = 2.425, y = 3.573, z = 1.926.

Use gauss - seidel iteration method to solve the equations 20x +y - 2z =17, 3x +

BX2: | o0y -7 = -18, 2x - 3y + 207 = 25
Sol: | The given system is diagonally dominant, so we can write
x=— (17 -y + 22)
y= % (—18 — 3x + 2)
2= (25— 2x +3y)
take the intial values y = 0, z = 0 then we get
Variable | Ist approx. | 1Ind approx. IHird IVth
approx. approx.
X 0.8500 1.0025 1 1
y -1.0275 -0.9998 -1 -1
z -1.0109 0.9998 1 1
The solution of the given system of equationsisx=1,y=-1,z=1.
Ex 3: | Apply Gauss-Seidel iterative method to solve the following system of equations
x+10y+z=6,10x+y+z=6,x+y+10z=6
Sol: | the given system is diagonally dominated

So we can write as x = 222
_ 6—z—x
Y=""0
take the initial valuesarey=0,z=0
I I I \V}
approx. approx. approx. approx.

X 0.6 0.4974 0.4999 0.5
y 0.54 0.5017 0.5 0.5
z 0.486 0.4992 0.5 0.5

The solutionisx=0.5,y=0.5,2=0.5

The following problems are discussed in the class work:

|1

\ Use Gauss elimination method, solve completely the system of equations




2X+Yy+2Z+wW =06, 6Xx—6y+ 62+ 12w = 36, 4x + 3y + 3z - 3w = -1,
2Xx+2y-z+w=10

2 Use Gauss Jordan method, solve the system of equations 10x +y +z = 12, x +
10y—z=10and x—2y+10z=9

3 Use Gauss Jacobi method, solve the system of equations 10x +y + z = 12, 2x +
10y +z =13 and 2x + 2y + 10z = 14

4 Use gauss - seidel iteration method to solve the equations 8x -3y + 2z = 20, 4x +
11y-z=33,6x+ 3y + 122 =35

Application: Finding the current in an Electrical circuit:

Consider circuits made up of
(i) three passive elements—resistance, inductance, capacitance and
(i) an active element—voltage source which may be a battery or a generator.
Ohm’s law: the current through a conductor between two points is directly
proportional to the potential difference across the two points.

Kirchhoff’s laws: The formulation of differential equations for an electrical circuit
depends on the following two Kirchhoff’s laws which are of cardinal importance :
I. The algebraic sum of the voltage drops around any closed circuit is equal to the
resultant electromotive force in the circuit.

I1. The algebraic sum of the currents flowing into (or from) any node is zero.
Electrical circuit: a simple electric circuit is a closed connection of Batteries,
Resisters, and wires. An electrical circuit consists of voltage loops and current nodes.




UNIT -2
EIGEN VALUES AND VECTORS AND QUADRATIC FORMS

If Aisa nxn matrix, then X = 0 is said to be an eigenvector of A if there exists a
scalar A such that A X = AX

Here The scalar A is called the eigenvalue or characterstic value or proper value of
Aand X is called the eigenvector or characerstic vector or proper vector
corresponding to the eigenvalue A .

How do I find eigenvalues of a square matrix?

If Aisa nxn matrix. Let X be an Eigen vector of A corresponding to the eigen
value A

AX=LAX
AX-AX=0
AX-AIX=0
(A-AD)X=0
This is a homogenous system of n equations in n unknowns.

The system has a non-zero solution X, if and only if det(A—Al)=0

Here det( A — AI) = 0 is also called the characteristic equation of A. this will be a
polynomial equation in A of degree n.

Ex1: | Find the eigen values and eigen vectors of the following matrix [—52 62 g]
Sol: | The characteristic equation of Ais |[A — AI| =0 — ’
5-4 -2 0
= | -2 6-4 2 |=0
0 2 T1-A
> 13— 1812+991—-162= 0
= A1=3,6,9

The eigen values of A are 3,6,9
Case(i): putA =3

2 -2 o1|X| |0
Wehave |-2 3 2]|y|=|0
0 2 41, 0




-2
R3 - R3_2R2 O 1

2 -2 0f|x 0
R, > R,+ R, |0 1 2||y|=]0
0 2 4}|z 0
2 0||x 0
2|ly|=10
0 0 0]|z 0
This is an Echelon form.
Rank of A =2 and number of variables = 3
Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1
The equations are 2x -2y =0,y +2z=0
Letz=k,theny=—-2k, x=2k

X 2k 2
The solution X = |y |=|-2k |= k|-2
z k
2
-2
The X = 1 is the eigen vector corresponding to the eigen value A = 3.
Case(ii): putA =6
-1 -2 oy|*| |0
We have [—2 0 2] y|=10
0 2 11|, 0
-1 -2 0][x] [0]
R, > R,— 2R, |0 4 2|ly|=|0
10 2 1][z] |0]
-1 -2 0][x] [0]
R; - 2R;— R, |0 4 2||y|=|0
0 0 0]|z] |[0]

This is an Echelon form.

Rank of A =2 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—-r=3-2=1

The equations are -x - 2y = 0,4y +2z2=0
Lety=Kk,thenz=—2k, x=-2k




X - 2k -2
ThesolutionX=|y|=| k |= k|1
z -2k -2
-2
1
The X = is the eigen vector corresponding to the eigen value A = 6.
Case(iii): putA =9
4 -2 07X |0
We have |-2 -3 2 y|=10
—4 -2 o01/%| |0
R2 - 2R2 - R1 0 _4‘ 4‘ y = 0
L 0 2 =21} 5 0
—4 —2 0]/ *| |9
Ry —» 2R;+ R,| 0 —4 4l|y|=]0

This is an Echelon form.

Rank of A =2 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1

The equations are - 4x -2y =0, -4y +4z=0
Lety=Kk,thenz=k, x=k/2

X k/2 1/2
ThesolutionX=|y|=| k [= k| 1
4 k
1/2
1
The X = is the eigen vector corresponding to the eigen value A = 9.
Ex2: 6 -2 2
Find the eigen values and eigen vectors of the matrix |-2 3 -1
2 -1 3
Sol: | The characterstic equation of Ais |[A — AI| =0
6-1 -2 2
= | -2 3-1 -1=0
2 -1 3

> A—2)(A*—-101+16)= 0




= 1=2,2,8
The eigen values of A are 2, 2, 8.
Case(i): putA =2

4 -2 2711* |0
We have [—2 1 —1] y|=10
2 -1 11}, 0

4 —2 21|*| |0
Rz - 2R2 + Rl,R3 - 2R3 - Rl, 0 0 0 y = 0
0 0 0 0

This is an Echelon form.

Rank of A =1 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-1=2

The equation is - 4x - 2y + 2z = 0,

Lety=k,z:cthenx:§— %
k ¢
X 2 o 1/2 -1/2
ThesolutionX=|y|=| k =k |1 |[+c| O
z c 0 1
1/2| |-1/2
The eigen vector o f A corresponding to the eigenvalue A =2is| 1 |,| O
0 1
Case(ii): putA =8
-2 -2 27X |9
We have [-2 -5 —1||y|=]|0
-2 -2 27X |9
RZ g RZ - Rl,R3 4 R3+ Rl' 0 _3 _3 y = 0
0 -3 =31}, 0
-2 -2 27X |9
R3 i R3 - RZ 0 _3 _3 y = 0
0 0 0 0

JA

This is an Echelon form.

Rank of A =2 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—-r=3-2=1




The equations are —3y—3z2=0,-2x-2y+2z=0
Letz=k,theny=—k, x=2k
X 2k 2
The solution X =|y = |-k |= k| -1
z k 1
2
The eigen vector o f A corresponding to the eigen value 1 =8 is | -1
1
The following problems are discussed in the class work:
8 -6 2
1 | Find the eigen values and eigen vectors of the matrix [-6 7 —4
2 -4 3
1 0 -1
2 | Find the eigen values and eigen vectors of the matrix |1 2 1
2 2 3

Properties of Eigen values:

Theorem1: the sum of the eigen values of a square matrix is equal to its trace and

product of the eigen values is equal to its determinant.

Proof: the characteristic equation of Ais |[A — AI| =0

all 2’ alZ 1n
a21 a22 /1 a2n
= =0
ay a, an, — A

By expanding this, we get

(a2 —A) (a22—2) ... (ann — A) — a12 ( @ polynomial of degree n — 2) + a3 ( a polynomial of

degreen—-2)+... =0.

i.e, (-1)" (A - aw1) (A —a2) ... (A—am) + a polynomial of degree (n—2) =0

i.e, ((1)"[A"— (am + az2 + ... + am) A" + a polynomial of degree (n-2)] + a polynomial of

degree (n-2) in A = 0.

i.e, (-1)"A" + (-1)™* (Trace A) A"* + a polynomial of degree (n-2) in A =0



if M, A2, ..., hn are the roots of this equation,

(=)™ Tr(4)

Sum of the roots =
-nn

=Tr(A)

We have |[A — AI| = ((-1)"A"+. ..+ ag
Put A =0. Then |A| = q,
DA+ ana A"+ a2 A2+ +a0=0

_ _(=D"ay _ _
=> Product of the roots = Con %= |A| = det A.

Theorem?2: if A is an eigen value of A corresponding to the eigen vector X, then A" is
eigen value of A™ corresponding to the eigen vector X.

Proof: Since A is an eigen value of A corresponding to the eigen vector X,
Then AX =AX
premultiply by A in above, A(AX) = A(AX)
A% X =L (AX) =1 (AX)=2A%X
Hence A2 is an eigen value of A? with X itself as the corresponding eigen vector.
The theorem is true forn =2
Let the result is true for n =k i.e, AK X =2AkX
premultiply by A in above, then A(AX X) = A(A*X)
= Ak+1 X — }\k+1X
Hence AX*1is an eigen value of A*lwith X itself as the corresponding eigen vector.
Hence by mathematical induction, the theorem is true for all positive intergers n.
Theorem3: A square matrix A and its transpose AT have the same eigen values.
Proof: we have (A — AT = AT — AIT =AT — Al
(4= ADT| = |AT — Al
|A—2AIl =|AT — 2l

Therefore, |A—AIl =0ifand only if |AT — AI| =0



Thus the eigen values of A and ATare same.

Theoremd: if A is an eigen value of a non-singular matrix A corresponding to the
eigen vector X, then A1 is an eigen value of A=and corresponding eigen vector X
itself.

Proof: since A is non- singular and product of the eigen values is equal to |A[, so none of
the eigen values of A is 0.

Since A is an eigen value of A corresponding to the eigen vector X,
Then AX =AX
premultiply by A= in above, A7 (AX) = 471 (AX)
IX =L (A"1X)=1(A"1 X)
A IX=A4"1X, where L £ 0
Hence by definition, then A= is an eigen value of A~*and corresponding eigen vector X

Theorem5: The eigen values of a triangular matrix are just the diagonal elements of
the matrix.

a, &, . . . a,
0 a, . .. a,
Proof: let A=
0 0 0. . a,]

Given A is a triangular matrix.

The characteristic equation of Ais |[A —AI| =0

a,—4 a, a,

0 0 R I
= (ai-A) (a22-A) ... (am-A) =0
= A=ai1, az., ..., ann
The Eigen values of A are ai1, az, ..., am just the diagonal elements of the matrix.
The Eigen values of a triangular matrix are just the diagonal elements of the matrix.



Algebraic and geometric multiplicity of a characteristic root:

Def: suppose A is square matrix. If A is a characteristic root of order t of the characteristic
equation of A, then t is called the algebraic multiplicity of A

Def: if s is the number of linearly independent characteristic vectors corresponding to the
characteristic vector A, then s is called the geometric multiplicity of A.

Note: s <t

Diagonalization of a matrix:

Def: A matrix A is diagonalizable if there exists and invariable matrix P such that
P~1AP = D, where D is a diagonal matrix. Also the matrix P is then said to diagonalize
A or transform A to diagonal form.

Modal and Spectral matrices:

Def: The matrix P in P~*AP = D which diagonalize the square matrix A is called the
Modal matrix of A and the resulting diagonal matrix D is known as Spectral matrix.
Note: 1. If the eigen values of A are all distinct, then it has n linearly independent eigen
vectors and so it is diagonalizable.

2. Suppose A is a real symmetric matrix with n pair wise distinct eigen values

A1, Ay, ..., A, Then the corresponding eigen vectors X,, X,, ..., X, are pair wise

orthogonal.
X3 _ Xn

Hence if P = (e, €5, ..., €,,), Where e; = ”iﬁ 182 = e = thenPisa
orthogonal matrix.
Calculation of powers of a matrix:
We have D = P71AP
Then D2 = (P~'AP) (P~1AP)
=> = P714%P
Similarly, D3 = P~1A43P
In general, D™ = P~1A"pP
Pre-multiply by P and post-multiply by P~ then
A0 0 .. O
we get A" =P 0 % 0 ... 0 pt
0O 0 0 0 4
1 1 1
Ex1: | IfA=]0 2 1] then diagonalize the A and also find A3
-4 4 3
1 1 1
Sol:|LetA=]0 2 1]
-4 4 3




The characteristic equation of Alis |[A — AI| = 0

1-2 1 1
= |0 2-4 1 |=0
-4 4 3-1
> 1-D(2-1DB-21)=0
= A=1,2,3
The eigen values of A are 1,2, 3
Case(i): putA =1
o 1 17|%| |0
Wehave[o 1 1] y(=10
-4 4 21|,| |o
—4 4 21|%| |0
R, ©R;l0 1 1]|y|=]0
—4 4 21/%| |0
R3 - R3_R2 0 1 1] y = 0
o o oll,| |o

This is an Echelon form.

Rank of A =2 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—-r=3-2=1

The equations are -4x -4y +2z2=0,y+z=0
Letz=k,theny=—k, x=-k/2

X A 1

The solution X =|y|=]| -k |= _7 2
z k -2
1
2
The X;=L" 2 is the eigen vector corresponding to the eigen value A = 1.

Case(ii): put A =2
—1 1 11|%] |0
Wehave[ 0 0 1||y|=|0

—4 4 1 0

N

-1

171X 0
0 1]y:0
0 0 =31}, 0

=

R3 - R3 - 4R1

o




R; —» R3;+ 3R,

This is an Echelon form.

Rank of A =2 and number of variables = 3

Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1

The equationsare-x+y+z=0,z=0

Lety =Kk, thenx =k

X k
The solution X =|y|=|k |= k|1
z 0
1
1
The Xz = 0 is the eigen vector corresponding to the eigen value A = 2

Case(iii): put A =3

-2 1 11X |9
Wehave[o -1 1] y|=10
0

—4 4 oll,
2 1 11|X| |0

Ry » Rs— 2R, |0 =1 1||yl=]0
o 2 -=21|,| |o
2 1 11|X| |0

R3 - R3 +2R2 0 -1 1 y = 0
o o oll,| |o

This is an Echelon form.
Rank of A =2 and number of variables = 3
Therefore, the system of infinite number of non-zero solutions
The number of arbitrary constantsaren—r=3-2=1
The equations are -2x +y+z=0,-y+z=0
Letz=k,theny=k, x=Kk
X k
The solution X =|y|= |k |= k|1
z k




The X3 =

Let P=[ Xy, X2, X3] =

1 11
2 11
-2 01

Then consider PT AP =

is the eigen vector corresponding to the eigen value A = 3

-1 1 0 1 1 11711 1 1 1 0 O

4 -3 =110 2 11| 2 1 1(=(0 2 O0}=

-2 2 1114 4 31l-2 0 1 0 0 3

Therefore A is diagonalizable.

Find A%: A®=p D P =

1 1 1]1 0 0 -1 1 0 —12099 12355 6305
2 1 1]|0 256 0 4 -3 —-1|= [-12100 12356 6305
=2 0 1110 0 65611L—-2 2 1 —13120 13120 6561

The following problems are discussed in the class work:

8 -8 -2
1 | Diagonalize the matrix [4 -3 —2]
13 —4 1
[3 -1 1
2 | Diagonalize the matrix |—1 5 —1]and also find A*
| 3

The Cayley-Hamilton theorem:

Every square matrix satisfies its own characteristic equation.

Proof: Let p(A) = po+ pak + ... + prad™ + pn",

Let B(A) be the adjugate matrix of the square matrix A - Al, which may be

considered as a polynomial in A and with matrix

coefficients

B(A) =Bo + AB1 + ... + A%!Bg1 + A9Bq, where Bq are constant matrices.

By the formula (adjA) A = (detA) I, we have

BOY(A - M) = p()I = pol + pdl + ... + prad™

+ prAl.



http://algebra.math.ust.hk/determinant/03_properties/lecture2.shtml#adjugate
http://algebra.math.ust.hk/determinant/03_properties/lecture2.shtml#adjformula

On the other hand, we have
B(A)(A - A1) = BoA + A(B1A - Bo) + ... + A9(BgA - Bqa) - A7*!B,,
Thus we get g =n -1 and

BoA = pol,

Bn1A - Bn2 = pnal,
-Bp1 = pnl-

Multiplying powers of A on the right sides, we get

BoA = pol,
BlA2 -BoA = plA,

Bn1A" - Bn-ZlA\n_1 = pn-lAn-ly
- Bn-lAn = pnAn.

Adding all the equalities together, we get
P(A) = pol + p1A + ... + Pt A" + p A" = O.

Applications of Cayley — Hamilton theorem:
1. To find the inverse of a matrix
2. To find higher powers of the matrix

2 1 2
Exl: Verify Cayley Hamilton theorem and find the inverse of | ¢ 5 3]
-1 0 -2

Sol: | The characteristic equation of Ais |[A — AI| = 0

2-14 1 2
= | 5 3-4 3|=0
-1 0 -2

> B-32-71-1)=0
Consider A3 — 342 —7A—1
36 22 23 -21 -15 -9
[101 64 60] + [—66 —42 -39
-7 =3 =7 0 3 —6
0 0O
= [O 0 O]
0 0O
Cayley Hamilton theorem is verified.
Consider A> — 342 —7A—1=0

+

7 0 14

-14 -7 -14
=35 -21 21|+

-1
0
0

0
-1
0

0
0
-1

|




AT A= 342-74A-1)=0
-6 2 -3

3 -1 1
Ex2: 2 1 1
If A= [0 1 0], find the value of the matrix A% — 547 + 74° — 34% + A* — 543 +
1 1 2
8A2 —2A+1
Sol: | The characteristic equation of Ais |[A — AI| = 0
2—-A 1 1
= 0 1-24 0/=0
1 1 2

> (AB3—-52%2471-3)=0
By Cayley — Hamilton theorem, we have
= (A3 — 542+74A-31)= 0
Consider, A% — 547 + 7A® — 3A% + A* =543 + 842 —2A + |
= AS(A3-5A% + 7A — 31)+A(A3-542 + 84 — 2I) + |
= A[(A3-54% + 7A = 31) + (A+D)] + |
=A(A3-542+7A -3+ A2+ A+1

=A2+A+1

5 4 4 2 1 1 0 0 8 5 5
= (o 1 o[+ |0 1 010] [030]
4 4 5 1 1 0.0 1 5 5 8

The following problems are discussed in the class work:

Verify Cayley- Hamilton theorem for the matrix and also find the inverse of the

1 8 -8 -2
matrix |4 -3 =2
3 —4 1

1 1 3
1 3 —3|and also find A*
-2 —4 -4

2 | Verify Cayley — Hamilton theorem for A =




Quadratic forms

A homogenous expression of the second degree in any number of variables is called a
quadratic form.

Ex: 3x? + 5xy -2y? is a quadratic form in two variables x and y.

Def:  An expression of the form Q = XTAX = ¥, ¥, a;; x;x;, where aj;s are
constants, is called a quadratic form in n variables x4, x,, ..., x,,. If the constants a;;s are
real numbers it is called a real quadratic form.

e, XTAX = X1, Y7, a;; xx;

all al?_ aln Xl
a, a a X
— [xl x2 xn] 21 22 2n 2
anl anZ ann Xn
Xl
X, . . :
Where X = and A is known as the matrix of the quadratic form.
X

n

Matrix of Quadratic form: any quadratic form Q can be expressedas Q = XTA X

The symmetric matrix A is called the matrix of the quadratic form Q and |A| is called the
discriminant of the quadratic form.

If |A| = 0, the quadratic form is called singular, otherwise non-singular. In other words,
if the rank of A is r < n then the quadratic form is singular otherwise non-singular.
Consider the quadratic form x? + 2y? + 7z% + 2xy + 6xz + 10yz

Write the coefficients of square terms along the diagonal and divide the coefficients of
the product terms Xy, xz, yz by 2 and write them at the appropriate places.

= ¥ z
- =2 w2 xz/2
¥/ ye ¥z/e

xS 2 /2 22




Thus the matrix of the above quadratic form is

1 2/2 6/2 1 1 3
2/2 2 10/2] =11 2 5]
6/2 10/2 7 3 5 7

Rank of the Quadratic form:
Let XT A X be a quadratic form. The rank r of A is called the rank of the quadratic form.
Canonical from (or) Normal form of a Quadratic form:
Let XTA X be a quadratic form in n variables. Then there exists a real non — singular
linear transformation X = PY which transform X7 A X to another quadratic form of type
Y'DY = LiyZ+ Ayi+ ..+ 1,92, then YTDY is called the Canonical form of
XTAX. Here D =diag[A, ,4,, ..., 4, ]
Def: Let Q == XT A X be a quadratic form in n variables x,, x,, ..., x,,
Index (s): The number of positive terms in its canonical form is called the index of the
quadratic form.
Signature: signature of the quadratic form is the difference of positive and negative
terms in the canonical form.

i.e,s— (r—s)=2s—ris called the signature of the quadratic form.
Nature of the quadratic form: If the rank of the matrix A is r and the signature of the
quadratic form Q is s, then the quadratic form is said to be
(i) Positive definite: if r=nand s =n (or) if all the eigen values of A > 0.
(i) Negative definite: if r =nand s = 0 (or) if all the eigen values of A < 0.
(iii) Positive semi definite: if r <nand s = r (or) if all the eigen values of A > 0 and at
least one eigen value = 0.
(iv) Negative semi definite: if r <n and s = 0 (or) if all the eigen values of A <0 and at
least one eigen value = 0.
(v) Indefinite: in all other cases (or) if some of the eigen values of A are positive and
others negative.

Methods of Reduction of Quadratic form to Canonical form (or Sum of Squares
form)

Any quadratic form may be reduced to canonical form by using following methods:

1. Diagonalization (Reduction to canonical form using Linear transformation)

2. Orthogonalisation (Reduction to canonical form using orthogonal transformation)

3. Lagrange’s reduction.

Reduction to canonical form using Linear transformation (Diagonalisation):
Let XTA X be a quadratic form, where A is the matrix of the quadratic form.
Let X =PY be the non — singular linear transformation
Then we have XTA X = (PY)TA (PY)
= (YTPT)A(PY)



YT(PTAP)Y
YT DY, where D=PTAP
Here YTDY is called the canonical form of the quadratic form.
Congruent matrices: the matrices D and A are congruent matrices and the
transformation X = PY is known as congruent transformation.
Working rule to reduce Quadratic form to canonical form:
Stepl: write the symmetric matrix of the given quadratic form.
Step 2: write the matrix A in the following relation: A ,,«,= 1, 4 L,,.
Step 3: reduce the matrix A on left hand side to a diagonal matrix (i) by applying
elementary row operations on the left identity matrix and on A on left hand side (ii) by
applying elementary column operations on the right identity matrix and on A on left hand
side.
Step 4: by these operations, A = 1Al will be reduced to the form D = PTAP

Where D is the diagonal matrix and P is the matrix used in the linear
transformation.
The canonical form is given by

YIDY = [y1 Y2 - Vu]

=d,y? + dyyi + ..+ d,y?

Exl: Reduce the following quadratic form to normal form and hence find its rank, index,
signature and nature: 10x2+ 2y? + 572 + 6yz - 10zx - 4xy
10 -2 -5
The matrix of the Quadratic formis -2 2 3
-5 3 5
We write A=1; Al;
10 -2 -5 1 00 1 00
-2 2 3|=]/01 0|A|0 1 O
Sol- | |- 3 5 0 01 0 01
10 -2 -5 100 1 00
R, - S5R, + Ry,R; = 2R3 + Ry, {0 8 10(=1{1 5 0|A[0 1 0
0 4 5 10 2] |00 1
10 0 O 100 111
C, » 5C,+ C,C3 » 2C;+ C,, |0 40 20|=(1 5 0O|A|0 5 O
0 20 10 10 2| |00 2




10 O 1 0 111
R3—>2R3—R2,O40 20| = |1 0|A|0 5 0
1 -5 4 0 0 2
10 O 1 0 O 11 1
Cgazcg—cz,04ozo=150A05—5
0O 0 O 1 -5 4 0 0 4

10 0 O 11 1

This is of the form D =PT AP, whereD= | 0 40 0} andP=|0 5 -5

0O 0 O 0 0 4

The linear transformation is X = PY
X 11 11}y
y 0 5 -5 yz
ie. Z|_ 00 41|y,
The quadratic form can be to the canonical formis YT AY =10 yZ + 40 y?
Rank =2
Index= 2
Signature=2(2)-2=2
Nature = Positive semi-definite.

Ex2: | Reduce the quadratic form to the canonical form 3x? + 2y? + 372 — 2xy — 2yz
3 -1 0
The matrix of the Quadratic formis -1 2 -1
0 -1 3
We write A=1; Al;
3 -1 0 1 00 1 0
-1 2 -1/=|0 1 0|A|O 0
sol: |10 -1 3] Jo o 1/ [0 0 1

0
1
0
30 0
R, > 3R, + R,,C, » 3C, + Cy, {o 5 -3 :{
0 -3

Ry — 5Ry+ 3R, C3 > 5Cs+ 3C,, |0 5
00
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This is of the formD =PT AP
The canonical formis yZ + y2 +y2

The linear transformation is X = PY

1 1 3
V3 V5 6Ty,
3 9
0o = =L
’ JEJE?/Z
1€ =10 ois
I J6

The following problems are discussed in the class work:

1 | Reduce the quadratic form to the canonical form x? + y? + 272 — 2xy + 4zx + 4yz
5 Reduce the following quadratic form to normal form and hence find its rank,
index, signature and nature: 10x?+ 2y? + 572 - 4xy - 10zx + 6yz

Reduction to normal form by orthogonal transformation:
In the transformation X = PY, P is an orthogonal matrix and if X = PY transforms the

quadratic form Q to the canonical form then Q is said to be reduced to the canonical form
by an orthogonal transformation.

Suppose A has Eigen values 44, 1,, ..., 4,, (not necessarily distinct) and X,, X,, ..., X,,are
three eigen vectors which are linearly independent, we can construct normalized eigen

vectors e, e,, e corresponding to 4,,4,, 4; which are pair wise orthogonal. Then we

. X X; X
define P = (e, e,,e5), Wheree; = —= e, = =% g5 = —2
(er, €2 €5) D2xall? 72 7 kel 73T Xl




The Mean Value Theorems are some of the most important theoretical tools in Calculus
and they are classified into various types. In these free GATE Study Notes, we will learn
about the important Mean Value Theorems like Rolle’s Theorem, Lagrange’s Mean
Value Theorem, Cauchy’s Mean Value Theorem and Taylor’s Theorem.

Rolle’s Theorem
Statement: If a real valued function f(x) is

1. Continuous on [a,b]
2. Derivable on (a,b) and f(a) = f(b)

Then there exists at least one value of x say ¢ € (a,b) such that f'(¢c) = 0.
1. Geometrically, Rolle’s Theorem gives the tangent is parallel to x-axis.

Rolle’s Theorem gives the tangent is parallel to x-axis.

<~

3. For a continuous curve maxima and minima exists alternatively

4. Geometrically y’’ gives concaveness 1i.e.

i. y”’ <0 = Concave downwards and indicates maxima.

ii. y”> > 0 = Concave upwards and indicates minima.

To know the maxima and minima of the function of single variable Rolle’s Theorem
is useful.



5. y’=0 at the point is called point of inflection where the tangent cross the curve is
4. called point of inflection and
6. Rolle’s Theorem is fundamental theorem for all Different Mean Value Theorems

Q1) The function is given as f(x) = (x-1)2(x-2)3 and X € [1,2]. By Rolle’s Theorem find the
value of ¢ ?

Sol. Given f(x) = (x-1)2(x-2)3 f(x) is continuous on [1,2] i.e. f(x)

= finite on [1,2] f(X) = 2(x-1)(x-2)3 + 3(x-1)2(x-2)2

f'(x)is finite in (1,2) hence differentiable then c €

(1.2)

f'(C) =0

2(c-1)(c-2)3 + 3(c-1)2(c-2)2=0

(c-1)(c-2)2[2c -4 +3c-3] =0

(c-1)(c—2)2[5¢-7] =0

ac:%:lAE(LH

Q2) Discuss the applicability of Rolle’s theorem to the function f(x) = % in[-1, 1]
Ans: Given function f(x) = in [-1, 1]

clearly f(x) is not defined at 0 in [-1,1]

so, f(x) is not continuous at x=0

=~ f(x) is not continuous in [-1,1]

=~ function f(x) fails first condition of Rolle’s theorem

So Rolle’s theorem is not applicable for this function
Q3) Find ¢ of Rolle’s theorem for the function f(x)=x?in [-1,1]

Ans:Given functions f(x) = x? in[-1,1],f'(x) = 2x
By Rolle’s theorem f'(¢) = 0
= 2¢=0

c=0in[-1,1].
Q4) Is the Rolle’s theorem applicable to the function f(x) = x? in [1, 2]?

Ans:Given function f(x) = x? in [1,2]

Clearly function f(x) is polynomial of degree 2,lim x? = a?

xXx—-a

=~ f(x) is continuous in [1,2].Clearly f'(x) is exist in [1,2]

But f(1) =1,f(2) = 4.f(1) # f(2)



Function f(x) is not satisfy the third condition of Rolle’s theorem

= Rolle’s theorem is not applicable for this function.
Q5) State Rolle’s theorem

Ans: If function f(x) is defined on [a,b] such that
(i) fis continuous on [a,b]

(i)f is differentiable on (a,b)

(iii) f(a)=f(b)

Then there exist at least one point ce (a, b) such that f'(c¢) = 0.
Q6) Verify Rolles’s theorem for the function f(x) = T

eX

in the interval [0,x].

Solution: (i) sinx and e* both are continuous functions in[0,7x]

sinx

therefore f(x) =

— 1s also continuous on [0,x].
e

(i) Also, since sinx and e* are derivable in (0,7) then % is also derivable in (0,m).

(i) fO) =2 =2=1, f(p) = T2 =" =0.

e 1 = e eb
Thus all 3 condition’s of Rolle’s theorem are satisfied.

There exist ¢? (0, p) such that £1(c) = 0.

sinx

We have f(x) =

eXx

| _ e*(sinx)!—sinx (e*)!
f (X) (ex)z

_ e¥ (cosx—sinx)
(e%)?

_ cosx—sinx
= prs

cosc—sinc
fle) =——

eC
We have fl(c) =0
B cosc—sinc =0

B cosc =sinc



sinc

cosc

Btanc =1
_ p
B tanc = tan "
B ¢ = 22(0,m).
Hence Rolle’s theorem is verified.

2
Q) Discuss the applicability of Rolle’s theorem to the function f(x) = 2 + (x — 1)3 in the interval
[0,2].

Solution: (i) f(x) is continuous on [0,2].

(i) f1) = 0+2(x—1)5

2 1

3 (x-1)3

Thus f!(x) does not exist in [0,2] at x = 1.

Therefore f(x) does not satisfy the condition of Rolle’s theorem on [0,2].
Hence Rolle’s theorem is not applicable.

Lagrange’s Mean Value Theorem
Statement: If a Real valued function f(x) is
1. Continuous on [a,b]

2. Derivable on (a,b)

fib)—f(a)

Then there exists at least one value ¢ € (a, b) such that f'(c) = —

Geometrically, slope of chord AB = slope of tangent



Application:
1. To know the approximation of algebraic equation, trigopnometric equations etc.
2. To know whether the function is increasing (or) decreasing in the given interval.

Q7) Find the value of ¢ is by using Lagrange’s Mean Value Theorem of the function
f(x) = x(x— 1)(x — 2) xe[0,5]

Sol: f(x) is continuous in [0, 1/2] and it is differentiable in (0, 1/2) f(x)
=(x2-X)[1] + x-2)(2x - 1)
=X2 - X+2X2 - X—4X+2=3x>—6X+2
From Lagrange’s Mean Value Theorem we have, f'(c)=3c¢? —6c¢c+2=
£f(1/2)—1(0)/1/2=3/4

12¢>-24¢c+8-3=0
12¢c2-24c+5=0

2414576240
==
24

_ \-"E

c=1 i—ﬁ a

se=1-Y1, (n,i)
[ 2

Q8) Find ¢ of Lagrange’s mean value theorem for f(x)=log.x in(1,e)

Ans:Given functions f(x) = log, x in (1,e),f'(x) = %

By Lagrange’s mean value theorem,f'(c) = f (b;:}; (a)
1_f@-r®
c e—1
1 1-0
> — =
c e—1

c=e—1in(1,e)
Q9) Find the value of ‘c’ of Lagrange’s mean value theorem for the function f(x) = x? in [1, 5].



Ans:Given functions f(x) = x2 in [1,5],f'(x) = 2x

_ f®)-f(@

By Lagrange’s mean value theorem, f'(c) ~—

fGB)-f@)
5-1

25—-1
4

> 2c=

> 2c =

c =3in(1,5).
Q10) State Lagrange’s mean value theorem.

Ans: If function f(x) is defined on [a,b] such that
() T is continuous on [a,b]
(i) is differentiable on (a,b)

F)-f(a)

Then there exist at least one point ce (a, b) such that f'(c) = P

Q11) What is the Lagrange’s remainder for Taylor’s theorem
Ans: f(b) = f(@) + (b - Of (@ + 52 (b - a)? + 52 (b - @) + -+ L0 (6 -
a)* 1 + R,where

_ (b-a)"f"(c)

Lagrange’s remainder,R,,
n!

-1} _
Q12) Apply Mean value Theorem to show that — \/_a <sin~lb —sin"la < — W where 0 <
a<b<l.

Solution: Let f(x) = sin™x, sin™1x is continuous and differentiable in [a,b].

1) = =

By Lagrange’s mean value theorem, there exist c? (a, b) such that £1(c) = %

1)~ f@
i~ b-d
1 sin"lp-sinla

Vi-c2 b-a (1)



We have ¢? (a,b)
pPa<c<b
Pa? < c? < b?
2 —a% > —c? > —b?

21l—a?>1—-c?>>1-5b?

2 Vl—a2>V1l—c2>+1-b?

1 1 1
':\/1—a2 < V1-c2 < V1-b2

1 sin~tb—sin"la 1
B <
Vi—-a? b-a V1-b?
b—a .1 .1 b—a
B <sinT'b—sin"ta < .
Vi-a? v1-b2

Q13) Verify Lagrange’s mean value Theorem for the function f(x) = x(x — 1)(x — 2) in the
interval [0,1/2].

Solution : (i) f(x) is continuous on [0,1/2].
(i) f(x) is derivable on (0,1/2).
fx) =x(x—1)(x—2)=x3—3x%2+2x
fl(x) =3x%—6x+2
By (i) and (ii) f(x) satisfies Lagrange’s Mean value Theorem.
There exist c? (0, %) such that f1(c) = %

23c?—6c+2=
®3c?2—6c+2=

|:>3c2—6c+2=3

B 12c¢2—-24c+8-3=0

2 12c?—-24c+5=0



_ —(-24)1/24%2(12)(5)
- 2(12)

Bc

_ 241v576-240

_ 24+a421
24

—

_ V21
=1+
=14 0.7637

=1.7637 or 0.2363

=0.2363
Therefore c? (0, %).

Therefore Lagrange’s Mean Value Theorem is verified.

Cauchy’s Mean Value Theorem

Statement: If two functions f(x) and g(x) are

1. Continuous on [a,b]

2. Differentiable on (a,b) and g’(x) # 0 then there exists at least one value of x such

that ce (a,b)

ficy _ flbi—fia)
g'icy  glbi-g(a

Generally, Lagrange’s mean value theorem is the particular case of Cauchy’s mean
value theorem.

Q14)If f(x) = ex and g(x) = e-X, Xe[a,b]. Then by the Cauchy’s Mean Value Theorem the
value of ¢ ?

Sol. Here both f (x) =e xand g ( x) = e - x are continuous on [a,b] and differentiable in (a,b)
From Cauchy’s Mean Value theorem,

f'(e)g’ (c)=f(b)—f(a)g(b)=g(a)

gt e

—p—C p—b_p—a

a+b
= =—
2
Therefore, ¢ is the arithmetic mean of a and b.

Q15) State Cauchy’s mean value theorem

02: — Ea+h



Ans: Statement: If functions f(x) and g(x) are defined on [a,b] such that
(Df, g are continuous on [a,b]

(i)f,g are differentiable on (a,b) and

(iii) g'(x) # 0V x € (a,b)

1'© _ fh)-r@

g9'©)  g)-ga@)

Q16) Find the value of ‘¢’ of Cauchy’s mean value theorem for the function f(x) = ¢* and g(x) =
e™in[a, b].

Then there exist a point c€ (a, b) such that

Ans:

Given functions f(x) = e*, g(x) = e ¥ in[a, b]
flx)=e*g'(x)=—e™*

By Cauchy’s mean value theorem

f'e) f)-f(a)
g' @) gb)—gla)

ec eb —e?
= =
—e—¢ e—b —e—a
b a
el —e
= —e?¢ =gb e
et — eb

= g2€ = gatb

c="in[ab]
Q17) Find c of Cauchy’s mean value theorem forf(x)=x2g(x)=x%in[1,2]
Ans:Given functions f(x) = x?%, g(x) = x3 in [1,2],f'(x) = 2x, g'(x) = 3x?

£1©) _ f®)—f(@)
’9'(c)  gb)—g(a)

2¢ _f@)-fQ)
3¢z g(2)-g()

2c 4-1

3¢2 8-1

By Cauchy’s mean value theorem




Taylor’s Theorem
It is also called as higher order mean value theorem.
Statement: If fn(x) is
1. Continuous on [a, a + X] wherex=b —a
2. Derivable on (a, a + x)
Then there exists at least one number 0 (0,1) (1-0 # 0) such that,
f(a + h) = f(a) + hf’(@) + -1 (a) .. +%f""(a} +R, _ (1)
Where R,, = Lagrange's form of remainder = %f”(a + Bh)
" (1—8)"1f"(a +6h)

Also Cauchy’s form of remainder R,, = DI
Note:

Substituting a = 0 and h = x in equation (1) (Taylor’s series equation) we get,
f(x)=f(0)+xf'(0)+xZ2!1f"(0)+x331f"(0)+-x"Y(n—1)!fn—1(0)+Rn
This 1s known as Maclaurin’s series.

Here Rn=x"n!fn (0 x)is called Lagrange ’ s form of remainder,
¥

Ry =——=(
(n—1)!
Q18) Expandexusing Taylor’s series up to second degree terms about x=1

1 —8)" f"(Bx) is called Cauchy’s form of remainder

Ans:Let f(x)= e*
By Taylor’s series about x=1
fO=fW+fOe-D+EB -1+ )
Since f(x)=e* ;f()=e.f'(x) =e* ;f' (D) =ef"(x)=e* ;f" (1) =e
Put these values in (1) we get .e* = e + e(x — 1) +§(x —1)2 4 -

Q19) Obtain the Taylor’s series expansion of the function f(x) = sinx up to third degree term
about the point x :%

Ans:Let f(x)= sinx

By Taylor’s series about X:%

T

r0=r@+r (6959 5 e o

Since f(x)=sinx ;f(%):%;f’(x) = cosx ;f' (%) = —f"(x) = —sinx; f" G) = —%

2



1

f""(x) = —cosx; f" (%) = ~7

- . 1 1 T 1 s 2 1 s 3
Put these values in (1) we get ,sinx _ﬁ"'ﬁ(x_Z)_ﬁ(x_Z) —ﬁ(x——) + -

Q20) Obtain the Maclaurin’s series expansion term of the function f(x) = e*up to third degree
Ans:Let f(x)=e*

f (0)x3 + ______ (1)

By Maclaurin series,f (x) = f(0) + f'(0)x + ! 2('0)x2 +—

Since f(x)=e* ; f(0)=1;f'(x) = e* ;f'(0) = L;f"(x) =e* ;f"(0) = 1;f""(x) =
e* ;f"(0)=1

Put these values in (1) we get e* =1+ x + ’;—T + ’;—T + -
Q21) Expand sinx using Maclaurin’s series upto second degree terms
Ans:Let f(x)= sinx
By Maclaurin series ,f (x) = f(0) + f'(0)x + %xz I (1)
Since f(x)=sinx ; f(0)=0
f'(x)=cosx ;f'(0)=1
f"(x) =—sinx ; f"(0) =0
f”'(x) = —cosx ; f"(0) = -1
Put these values in (1) we get, sinx = x — xg—? + -
Q22) Expand cosx using Maclaurin’s series upto second degree terms
Ans:Let f(x)= cosx
By Maclaurin’s series
f@=FO+FOx+E0x2 4 &)
Since f(x)=cosx ; f(0)=1
f'(x) = —sinx ;f'(0) =0
f"(x) = —cosx ; f"(0) = -1



2
Put these values in (1) we get, cosx = 1 ——+ -~

UNIT- IV
PARTIAL DIFFERENTIATION

Total derivative: If © = f(x,¥) where x = ¢(t) and ¥ = ¥(t), then we can express u
as a function of ¢t alone by substituting the values of x and ¥ in f(x,¥). Thus we
du

can find the ordinary derivative 4 which is called the total derivative of u to
au au
distinguish it from partial derivatives o= “" .
du
To find ar without substituting the values of x and ¥, we establish the chain

rule.

du_ gudx | oudy
dt ~ dxdt dydt

Note: If u = f(x,¥,z) where X,y and z gre all functions of t, then chain rule is

du _dudx  dudy  dudz
dt ~ adxdt adydt ozdt

Differentiation of implicit functions: If f(x,¥) = ¢ be an implicit relation
between X and ¥ which

defines as a differentiable function of x, then

df df dx | df dy Jaf | df dy dy af ,of
Bt — —_—— —_ — —_——y = = — /=
dt dx dt dy dt 0 dx t dy dx dx 6x/ay

Problem: If the curves f(x,¥) = 0 and @(3, 2) = 0 touch then show that

5,9, % = f:9,

fx

dy dy 3,
xy)=0=> —=-—= O(y,z)=0=>—==—-—=
Sol:f( V) dx fy and .2) dz

2y

dz _ dz dy__@_y _E_&&

dz
Consider & dy'dx o, f 8, 'f = [Pz, = [0y
— tan! (2 L.
Problem: If % = tan (x)where x=et—etandy=e"+e”" find u

Sol: Given ¥ = tan™" G)

2 2
y _ x 1 —
.—x—z.(et +e t)+x2+y2 .;.(et—e H

du _ gudx  oudy _ _x
dt ~ dx dt = dy dt  x24y2

I x
T x24y2 Y +x2+y2 :

X

_xz—y2 _ 2
T xZ4y? T gliqe-2t




du
Problem: If u = xlogxy where x> + y* + 3xy = 1 find %

Sol: Given x*> +y® +3xy =1,

Suppose f(x,y) = x* +y° +3xy — 1

a
d_y _ _ﬁ_ _3x2+3y _ _x2+y
dx 0L 7T 3y243x  y24x
dy

du du 5‘_ud_y 1 dy

1
- _E+ay = (1.]0gxy+x.g.y) +x.5.x.a

_ X _x2+y
—logxy+1+y.( y2+x)

x(x%+y)
y(y2+x)

=1+4logxy—

y—X zZ—x 2 dU 2 dU 2 dU
- — 4zl =
ty dy + 0z

Problem: 1fV = F(Fg) then prove that * ax 0

= y—x 27X
Sol: GivenU_F(xy ’ xz)

T_yfx_l 1 _z—x 1 1
Suppose xy x oy’ xz — x z, thenU =F(r,s)
au dau ar dUu ds au -1 au -1 2 dlU au au
— =t ——=— ot — 5 = xP—=—— ==
dx dr dx = ds dx  Or “x? s "x? ox ar  ds

W _ U auos _au 10U o p0u _ou
dy T oor dy ds dy = or Ty2 s’ dy ~oor
U _udr Uds U L 0U 1 00 _ U
dz ~ dr dz = ds dz  or " ds “z2 dz  ds

xzﬂ_}. 2ﬂ+22ﬂ—_£_£+£+ﬂ—0

Therefore dx y dy az  or dt dar as .

Problem: If z=f(x,y), x = e“ + e Vand ¥ = e“ —e™", then prove that
dz dz dz dz

du v dx y dy.

-v

Sol: Givenz = f(x,¥)and x = e +e 7,y =e" —e

0z dz dx | 0z 0 a a
du dx du dy du dx dy
dz dz dx dz d d _ dz  _
e
v ox dv ~ dy dv 0x dy
A ) T R )
Consider &w  av (()x e’ + dy ¢ ox e+ dy ¢



_B_z u —v 3_2 u __ ,—v
—dx(e +e )+ay(e e’")

Bz 6_2

dx dy

Problem: If by the substitution u = x* —y%,v = 2xy, f(x,y) = 6(w,v), show

that
a%f , 9*f 220 020
E + ayz - 4‘(x + y )(auz avz)
of _9fou  9f v _ _
Sol'ar = auar T ovor = Ju-2x+ fp.2y = 2(xfy +

o _

ady

*f

dx?

ﬁau af dv
du dy dv dy

= (&) =5 Ceh +ym)

(xfu) +2-- (yfv)

)

L = [ =2y + [, 2% = 2(=Yf, + Xf;)

—2[ (fun 5o+ fuo 52) + fu 1]+ 29 (fuv 5o+ fiv )

= Z[x(fuu-zx + fuvzy) + fu 1] + Zy(fuv-zx + fvv-zy)

= 4’xzfuu + 4'y2fvv + 8x3’fuv + zfu

=2 (L) =2 -yfu+x£))

ayz — ay
= —25- (V) + 25 (xf)
= =2y (fu 5o+ fuw 50) + 1]+ 25 (fu 55+ fon 57)
= =20y (fuu- =2y + - 22) + fu- 1]+ 2x(fuy. =2y + frp. 2)
= 4y fouy + 452 fyy = 8XYfu, — 21,
L O = (432 f + 4 fr + BV fo + 26) + (49 fun + 422, — BV

= 4'(x2 +y2)(fuu + fm})

= 42+ ) (55 +55)

92z

Problem: Transform ax

substitution

1
X =uv,y=-

Hence show that z is the same function of u

Sol: Given that

1 1
X=uv,y=- =u=xyandv=y

%z 20z 392y 202,
=+ 2xy ax+2(y y)ay+xyz Obythe

vand as of x and Y.

- zfu)



dz dz du dz dv
a—aa‘l‘aa— WY +2,.0 =yz,

=Zy =Yz,
= XZ, = XyZ, = Uz,

b o a1

dy  dudy dvay U vty
_ 1

= yzy = Xyz, — %

=uz, — vz,

P 3 ()9 (s (0% 42, %)
dx2 ~ ox \ox/ ~ ox Vau) =¥V Zuu ox Zu”ax

—_ 2

=¥V Zu

= Zyy ZyZZuu

0%z
Substituting these values in 9x?
v2z, +2y*uz, + 2(1 — y»).uz, — vz, + x*y?z =10

20z 3402 2.2, _
+ 2xy ax+2(y y)ay+xyz—0
=>vizzuu+2v—12uzu+2(1—%).(uzu—vzv)+uzz=0
= Zyy + 2uz, + 2(v? = 1). (uz, — vz,) + u’v?z =0

= Zyy + 2uv?z, +2(v —v3).z, + uPviz =0

UL
Problem: IfU = F(x —y,y — 2,z — X), then prove that ox " ay ' dz —

Sol: U=F(x—y,y—22—x)

Suppose X —y =71, y—z=s,z—x =t thenU = F(r,s,1)

au au ar aU ds ou at au au au au au

o e R L i

au au or dau ds ou at au U U ou alu
—_—_=——t——t——=—= =14+ = 14+— 0==-=+—
dy ar dy ds dy at dy ar ds at ar ds
au au or au ds au at au au au au au
% matmatan o 0tes 1tgl="95"1%

| oU _

—+—+—=0
Therefore ox ~ ay = oz )

, We get



Definition: If u and v are functions of two independent variables x and ¥, then
Ju du
ax oy
v v

the determinant lax  aylis called the Jacobian ofu, v with respect to*, ¥ and is

d(u,v) o
denoted by a(xy)

7 (5)

U U, u,
x,y,zis|Vx Vy Vg
Similarly the Jacobian of u, v, w with respect to We Wy W
a(u,v)
Problem: If x =u(1 —v), y =uv, then find d(x.y)
p==2=2
Sol:x=u—uw=u—-y=u=x+Yygngd u o xty
du L du o dv -y dv _ (xty)l-yl  x
ax ~ Tay  ax (x4+y)2 oy (x+y)2 T (x+y)?
u u
duy) _ |ox ay| _ _13, % __x y -1 4
a(x,y) dv  dv x+1)?  (x+y)? (x+y)? * (x+y)2  x+y
dx dy
d(xy.z) _ 2

Problem: Ifu=x+y+zuv =y + z, uvw = z show that dw.vw) w

Sol:u=x+y+z =x=u—(y+z)=u—uv

uw=vy+z SY=Ur—zZ=urv —uvw and z = uvw
Xu Xy Xy 1—v —Uu 0
a(xy.z)
) Yo Y Yw|=|lv—vw u—uw —uv| R 2R +R,+R3
. Zy Zy Zy W uw uv
1 0 0
=lv—vw u—uw -—uv
W uw uv
= uv(u — uw) — ulvw
= u?v
a(u,v)
— -1 -1 _ Xty I Sl
Problem: [f¥ =tan “x+tan "y, v=57""" then find 2¢x)
Sol:
du 1 du_ 1 dv _ (A—xy)l—(x+y)—y _ 14y? v (Q—xy)l—(x+y).—x _ 1+x2
dx  14x2’dy  14vy2’dx (1—xy)? T (-xy)2’ay (1—xy)? T (1-xy)?



d(uy,uz,u3)
0(xq,%2,Xx3)

J

du du 1 1

duw) _ |ox ay| | 1422 e D S C - LN S G LA U SR
deey) |2y dp| T ty? e [T T (1-ay)? 1yE (A-ay)? T (I-xy)? (L-ay)?
ax dy (1-xy)?  (1-xy)?
Problem: If
Xr Xg Xy sin @ cos 1 cos @ cos —rsin @ sin
r 0 @ cos -r
a(x,y,z)

x =rsinfcosg,y =rsinfsing,z =rcosb then find (6.0

Sol:
. @ P ®
g(x’+z): Yr Yo Yo|=|sin@sing rcosfsing rsinfcose |=1%sind
o0z oz oz 0 sin 0 0
__dwy) / a(xy)

IfJ

Properties of Jacobians: = 0y M4 = auv), then JJ' =1

2. Chain rule for Jacobians: If &, v are functions of 7, s ans 7. § are functions
of X.¥, then

duwv) _ d(uw) a(rs)
a(xy)  a(rs) "o(xy)

3. Jacobian of Implicit functions: If %1, U2, U3 instead of being given explicitly
in terms of X1, X2, X3 be connected with them equations such as

f1(uy, up, uz, xq,x2,%3) = 0,
f2(uy,uz, uz, xq,x2,x3) = 0, f3(wy, Uz, u3, X1, x2,x3) = 0, then

(f1.f2.13) j0(f1.f2.[f3)

0(xq,x,x3)/ 9(x1,X2,X3)

(-3

j — a(x'y) ]I — 6(?’,9)

Problem: Ifx =rcosf,y =7rsind evaluate’ ~ ar6) and * ~ a(xy). Also

show that JJ = 1.

Sol:x = rcos@ and v = rsin @ then

dox ax _ . dy . dy

ar—cose,ag— rsme,ar—sml?,ag—rcose

axy) _ |or ae cos@ -—rsinf 2 .

= =|. =1 =7r(cos“ 0 +sin“0) =r
are) [y 3y sin@ rcos@ ( )

ar 260



xX2+y?=r2=>r=vx?+vy%) and

Y —tanf® = 0 =tan"!Z
x x
dar 1 x dr 1
—:—Zx:—'—:—Zy:Z
dx  24/(x?+y?) oy 2y (x?+y?) r
a6 1 y v y 068 1 1 x x
P DN 2 x2av2y 27 3y Ny T (23v2) 2
dx (1"%2) x (x24y4) T dy (1_'_17_) X (xé4vy2) T
or  or x oy
v awe) _ox ooyl | 7 7 _x2+y2_1
J T a(ey) |96 98 T (¥ XT3 7 37y
™ @ r2 g2

' 1
Therefore // =77=1

Taylor’s theorem for functions of two variables:

The Taylor’s series expansion for a function f(X.) in powers of x — a and
y—bis

f(xy) = f(a,b) +[(x— a)f,(a,b) + (y — b)f,(a,b)] +
[0 = @ fax(a b) + 2(x = @)y = B)f (@, b) + (¥ — bYf (@, B)] + ...
Note: The Taylor’s series expansion for a function f(x.¥) in powers of x and
Yis
f @y =£(0,0) + [(x — a)fx(a,b) + (¥ — b)fy(a, b)| +
[ ax(@,b) + 2xyfry(a,b) + Y2y (@, B)] + ..
Problem: Expand €” siny in powers of x and ¥ up to second degree term.
Sol: Suppose f(x,¥) = e*siny, f(0,0) =0
fi(x,y) = e*siny, £(0,0)=0
fy(x,y) =e*cosy, £,(00)=1
fux (X, y) = e*siny, f,(0,0) =0
fey(x,y) = e¥cosy, £, (0,0) =1
fyy (x,¥) = —e*siny, f,,(0,0)=0

Taylor’s series expansion for a function f(*,¥) in the neighbourhood of (a, b)



f(,y) = f(a,b) + [(x — a)f(ab) + (y — b)fy (a,b)]| +

%[(x - a)zfxx (arb) + Z(X - a)()’ - b)fxy (an) + (y - b)zfyy (an)] + ..

= fy)=y+xy+--

-1%
Problem: Expand ¥ "% in powers of (x = 1) and (¥ — 1) up to second degree
terms.
ot/ (2) = tan Fap =1
fo=rm — G = s
* (1+¥;) x2 T (x24yd)
f(11) = -3
f _ 1 l _ x
N (P £ =3
_ 2xy 1
fux = Gy fex (L1) =3
fo = ((x2+y2).lfy,2y) _ (x2—y?)
xy (x2+y2)2 (x2+y2)2
fuy (11) = 0
_ 2xy _ 1
f:—Vy - (x2+y2}2 f;ﬁy (]wl) - _E

The Taylor’s series expansion for a function f(x,¥) in powers (x —a) and
(y—D)is

fG,y) = f(a,b) + [(x — a)fe(a,b) + (y = b)f, (a,b)| +

%[(x —a)?fix(a,b) + 2(x —a)(y — b)fey(a,b) + (y — b)zfyy (a, b)] + ..
[y =fAD+[(x - DAAD + (= DAAD] +
%[(x — D fe (LD +2(x — D& — Dfsy L) + (v = D?f,, (LD] + ..

> fEy) =5+|0- D=3+ G- D3|+ 5| - D s+ G- D23+ -

Sfy) =55l -1D-@-Dl+1lx-1? - -1+ ..

Maxima and mimina of functions of two variables: A function f(x.¥) is said
to have maximum or minimum at (@, b) according as f(a + h,b + k) < f(a, b)
or f(a+h,b+1Ik)> f(a,b)for all positive or negative small vales of h and k.

Note: f(a,b) is said to be a stationary value of /(x,¥) if fx(a,b) = 0 and
f,(ab)=0



i.e. the function is stationary at the point (a. b).

Working rule to find the maximum and minimum values: Suppose f(*,¥) be
the given function.

.= % and f, = ﬁ .
1. find dx oy and equate to each zero. Solve these as simultaneous

equations in x and V.
Let (a.b), (c,d), ... be the stationary points.

2.find the values of = ax2’" axdy’~  ay? at each stationary point.

3.(i) If rt —s? > 0and r < 0 at (@ b), then f has maximum value at (a. b),
(i) If rt —s? > 0and + > 0 at (@ b), then / has minimum value at (. b),

(iii) If rt —s2 < 0 at (@ b), then f(a b) is not an extreme value. i.e. (@ b) is
saddle point.

(iv) If rt — s = 0 at (@, b), it needs further investigation.

Problem: Find the maximum and minimum values of the function
x2 + y2 —2x

Sol: f(x,y) =x*+y*—2x

fe=2x—2and fy =2¥

Suppose fx =0 and fy =0je2x—2=0and 2y=0=x=1landy =0
= (1, 0)the stationary point.

Now " = fox =2, S=fay =0gnd t = fry =2

rat(1,0) =2 sat(1,0) =0 gnd tat(1,0) =2

Consider rt —s?=4—-0=4>0and r=2>0

Therefore /has minimum value at(1, 0)and fiin =1+0—-2=~-1

Problem: Discuss the maximum and minimum values of u if
u=ax3y? — x*y? — x3y3

Soliu = ax’y? —xty? —x7y?
u, = 3ax?y? — 4x3y? — 3x%y3 Suppose

u, = 2ax*y — 2x*y — 3x3y?



u, = 0= 3ax?y? —4x3y? —3x%y3 = 0= x*y*(3a—4x—3y) =0

u, =0 = 2ax3y — 2x*y —3x3y? = 0= x®y(2a—2x—3y) =0 The
a a
=x=0,y=0,2x+3y=2a Stationary points are (D’O)’(E'E)

a a ﬂ4
T = Uy, = 6axy’ —12x°y? —6xy3 = rat (— -) =2

2’3 9
s =1u,, = 6ax’y—8x3y—9x2y? > sat (%2 =«
A Y y y 2’3/ 12
_ — 2ax — 2x% — 63 aay_ _at
t—uyy— ax® —2x" —6x°y = tat (5,5)——?
8 8 8
2 & _& _a
AndTt—s 72 144 144>0andr<0

a (16

= u has a maximum value at (%E) and Unmax = 35

Problem: Discuss the maxima and minima of f(x,¥) = x*y*(1 —x — y)
Soliu = x%y? —x*y? —x%y?

u, = 3x2y? — 4x3y? — 3x%y® Suppose

u, =0=3x%y?2 —4x3y2 —3x2y3 = 0= x2y2(3—-4x—-3y) =0
w, = 250y — 26ty — 3x3y? y y y ye( y)

u, =0 = 2x%y — 2ty —3x3y2 =0 > x¥y(2 —2x—3y) =0 =¥ =0y =0 Ax+3y=3
11
Sx=0y=02x+3y=2 The stationary points are (>:0) and (E’E).

7= Uy = 6xy? — 12x%y? —6xy’ > rat (l l) - _1

2’3 9

11 1
5 =Uyy = 6xzy—8x3y—9x2y2 =>sat (5_5) =—=
— — 243 — 94t _ 43 1 1y__1
t=u,, =2x° —2x 6xy=>tat(2,3)_ 5

2 _ 4+t _ 1 __1
And Tt TS =5 144—144>0andr— 9<0

11 1
= u has a maximum value at (z ' 3) and Upnay = 5

Lagrange’s method of undetermined multipliers:



Sometimes it is requires to find the stationary vales of a function of several
variables which are not all independent but connected by some given relations.
Generally, we convert the given function to the one, having least number of
independent variables with the help of given relations. Then solve it by the
above method. When such a procedure becomes impracticable, Lagrange’s
method proves very convenient.

Letu = f(x,¥,2) ... (1) be a function of three variables %, ¥,z which are
connected by the relation
px,y,2)=0 . (2

du du du

. .. —=0,—=0—=0
For u to have stationary vales, it is necessary that ox — “ay oz

du

du du
Differentiating (1), we get ax dx + 5= dy + 52 dz = du =0

. 3)

Also differentiating (2), we get ox dx + dy dy+5;dz=dp =0

Y]
Multiply (4) by parameter A and adding to (3), we get

¢

(g—z+ﬂg—f)dx+(3—:+l£)dy+(g—z+/1z—§)dz=0

du ad

u 909 _ gy 109 _ g 400 _
This equation will be satisfied if ox T =0 ay T Aay 0.5, 45, =0

These three equations together with (2) will determine the values of X,¥, Z and
A for which w is stationary.

Working rule: 1. Write F = u(x,y,z) + 1¢(x,y,2)

OF _ o o

2. Obtain the equations ox — oy ~ oz 0

3. These three equations together with ®(x,y.z) = 0

The values of *.¥, Z so obtained will give the stationary value of / (x,,2).

Problem: In the plane triangle ABC, find the maximum value of

cosAcosBcosC

Sol: U(A,B,C) =cosAcosBcosC gnd ¢(A.B,C)=A+B+C—n=0

Define F = cosAcosBcosC+A(A+B+C —rr)'

JOF .
Fy =;—A: —sinAcosBcosC + 4
aF

FBZE

= —sinBcosAcosC+ A1



Fe =Z—£= —sinCcosBcosA+ A

Suppose F4 =0,Fg =0,Fc =0 je,
—sinAcosBcosC+A=0=A=sinAcosBcosC

sinBcosAcosC+A=0=>A=sinBcosAdcosC—

. ) = tanAd =tanB =tan(C
sinCcosBcosA+A=0=A=sinCcosBcosA—

SA=B=C=Z(~A+B+C=m)
A=sinAcosBcosC =sinBcosAcosC =sinC = B cos Acos

. (z i z)
"~ \373”3/is the stationary point of

w s T 111 1
U(A,B,C)and Uy, = COS7COS=COST === =<

Problem: A rectangular open box of capacity 32 cubic units is to be prepared.
Find the dimensions of the box, to minimize the cost of painting outside.

Sol: Let x,¥ and z ynits be the sides of the box and  be its surface.
Then S=xy+2yz+2zx gnd V = xyz = 32

Define F(x,y,z) = xy + 2yz + 2zx + A(xyz — 32)

oF _ _ _ ZO¥20)
Then 7= y+2z2+Ayz=0= A4 >
g—;=x+22+/12x=0=>2,=M
aF _ _ —(2y+2x)
e —2y+2x+lxy-0=>l_—xy
—) = —(v+2z) — —(x+2z2) — —(2y+2x)

vz zx xy

Now

—(y+2z) _ —(x+22)
vz - zZx

and

=x(y+22)=y(x+2z)=x=y

—(x+2z) _ —(2y+2x)
zx xy

=vyx+22)=zQy+2x)=y=2z

Therefore x =y = 2z = k (say)

k
Since XVz = 32 = k'k'E =32=k=4



Hence shas minimum value when x =4,y =4,z =2,

UNIT V

MULTIPLE INTEGRALS

2 ~x2 Y
Problem: Evaluatelo Jo €+ dydx

x2

2 .')C2 2 2 e%
fo fo ex dydx = fO - dx
ol: 0

x

S
2
= [y x(e* =1 dx
2
= 1) — 52
e n - =t
2 px+2
Problem: Evaluate)"; J;z @ dx,
2 +2 2 —x42
sol:! =[S L dy dx = [0 57
—f_l(X-l-Z—x )dx
x?2 x37%=2 9
= {? + 2x — ?}x:_l = E

Problem: Evaluate 070 J(1-x?)(1-y?)

Sol: The region of the integration is bounded by ¥ =0,y = L,x =0and x = 1

2

_ 1l dxdy ol dx i 1oay=l_m el dx  mwe . _q x=1_T W _ W
[_IO fD \/1_;{2\/1_3,2_{0 Jl_xz{Sln y}y=0_2f0 Z_Z{Sln x}x:()_z 2 4

1 px?
Problem: Evaluate)o Jo €* dvdx
1 x2 1 .2
Sol-ho Jo € dydx = [ e* (9))=5 dx
— 1 X A2
= [, e* x%dx
= {e*.x% —e*.2x + e*.2}75}

=e—2



2x-3 .
Problem: Evaluate JJz ¢~ 74Xy oyer the triangle bounded by
x=0,y=0andx+y=1

Sol: Given region of integration is triangle formed by lines
x=0y=0andx+y=1

The linex + ¥ = Lintersects x-axis at (1,0) and y-axis at (0,1).

dx

erfiiy }y=1—x

_ 1 1—x 2x—3 !
I=1_, fy=0 e W dxdy = [ { =

_ _%fnl(er—3(1—x) _ ezx)dx

= —%f01(65x_3 —e2)dx

1[/e? e? 1 1 e?-1
- _5[(?_7) - (E_E)] 1o
Problem: Evaluate the JI ¥ dxdy over the region R where R is the region
bounded by parabolasY ? = 4x and x? =4y,

Sol: Given R is the region bounded by parabolasy 2 = 4xand x* = 4y

The point of intersection of given two parabolas is (4.4),

4 2 4 _
L= o[ ey ardy = [yt i ay

4

4 48
—5.32—16—?

1 x x+y
Problem: Evaluate Jx=oJy—oJ,—o ¥ dzdydx,

_r1 x x+y _rl x Z=x+y
sol! = x:O«ry:O o Xdzdydx = [ _ fyzox(z)z=0 dydx

1
=/ f;zo x(x + vy) dydx



1 2 2 2
Problem: Evaluate Jezo fyzo Jy—ox* yzdxdydz

2\ Z=2

1 2 (2 1.2
SOI:Ir = Jiso J‘y=0 Jy_oX* yzdxdydz = [, fyzo x%y (Z?)Zzo dxdy

1 2
=J_ fy=0 2x? ydxdy

_ ! 2 (Y27
= fx=0 2x (2 )yZO dx
= fxlzo 4x? dx

x=1

-4{5),, =3

log y f;; logz dz dy dx

e

Problem: Evaluatefy=1 x=1
lo, * log X

ol 1= L [ I logzdzdy dx = [T [ "{z(logz — D}=f" dydx

= fyezl P9V [e% (x — 1) + 1] dxdy

x=1

= J'le{ex(x —1)—e* +x} %Y gy

x=1

= [{(yQogy — 1) — y +logy) — (—e + 1) dy

= fle(ylogy— 2y +logy + e — 1)dy

e

2 2
= (y?logy —yj—yz +y(logy—1) + (e — l)y)1

=(%—%—ez+e(e—1))—(0—%—1+0+(e—1))

2
e“+9
= — 2e
4




1 2 2 9
Problem: Evaluate Jz=o0 Jy=0 Jx—o** y2 dzdydx

3, X=2

1 2 2 1 2
SOII - fz=0 fy =0 ‘LC:U xz yZdZdydx = J.z=0 fy=0 {%}x:() yZdZdy

8 1 yZ yzzd
- Efz:O {?}yzo Z

16 1
= ?Iz:o zdz

_E{i]m_ﬁ
3l2),20 3

2Vax
) by changing the order of integration.

2 4a dy dx

f4a
Problem: Evaluate’o

Sol: The region of the integration is bounded by
y= x2/4a,y =2Vax,x = 0and x = 4a

2

y
On changing the order of integration, * ~ &z t° 2Vay angy - 0to 4a

1= 02 dady = [ dy
4a x=—

“4a
= [," (2vay - 1—2) dy
4a

O ~00 xZ 2 . .
Problem: Evaluate Jo Jo © 50%) dxdy by changing to polar coordinates.

Sol-l = fow fOOO e‘("2+y2)dxdy

Avrea of the given integration is bounded by ¥ = 0,y = o0,x = 0,x = o
Putx =rcos@y =rsiné then dxdy = |/|drdé = rdrdf

—t dt

= Jg f e rdrdo = fg [ et S do (<2 =t = 2rdr = dr)

1 (2 pvimco
=5f02{—€ Y5 do

1 = T
:Efozcigzz

1 01 —x?
Problem: Evaluatef0 fy e~ axdy



10,1 _,2
sol:l = Iy J, 7 dxdy
On changing the order of integration ¥ 2 0 toxand x - 0 to 1.
101 _,2 1 )
1=, fye * dxdy = | foxe * dxdy
= Jy e ) Shdx
1 _.2 1 1
= [, e xdx =5(1—;)
Problem: Evaluate the double integral

2
szafa — L dxdy y-ax
0 Nax (4 22y by changing the order of integration.

Sol: The region of the integration is bounded by
=\/ai.ey2 =ax,y=a,x=0andx =a,

yZ
On changing the order of integration, * ~ © 07 andy = 0toa

o
2 a a
1= [ f —Y dxdy ==’ f dxdy == [ y? {ésin‘l(%)} dy

1
— YAV 4 7 a
(rt-a?x?)z Lz_xz)

= J; y*(sin"'1—sin"! 0)dy



	How do I find eigenvalues of a square matrix?
	Total derivative: If  where  and , then we can express  as a function of  alone by substituting the values of  and  in . Thus we can find the ordinary derivative  which is called the total derivative of  to distinguish it from partial derivatives .

